Update README - Run 20251012_191456
Browse files
README.md
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- image-classification
|
| 6 |
+
- imagenet
|
| 7 |
+
- multi-scale
|
| 8 |
+
- crystal-geometry
|
| 9 |
+
- david
|
| 10 |
+
datasets:
|
| 11 |
+
- imagenet-1k
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
model-index:
|
| 15 |
+
- name: David-partial_shared-hierarchical_tree
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: image-classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: ImageNet-1K
|
| 21 |
+
type: imagenet-1k
|
| 22 |
+
metrics:
|
| 23 |
+
- type: accuracy
|
| 24 |
+
value: 66.69
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# David: Multi-Scale Crystal Classifier
|
| 28 |
+
|
| 29 |
+
**David** is a multi-scale deep learning classifier that uses crystal geometry (pentachora/4-simplexes)
|
| 30 |
+
as class prototypes with role-weighted similarity computation (Rose Loss).
|
| 31 |
+
|
| 32 |
+
## Model Details
|
| 33 |
+
|
| 34 |
+
### Architecture
|
| 35 |
+
- **Preset**: balanced
|
| 36 |
+
- **Sharing Mode**: partial_shared
|
| 37 |
+
- **Fusion Mode**: hierarchical_tree
|
| 38 |
+
- **Scales**: [256, 512, 768, 1024]
|
| 39 |
+
- **Feature Dim**: 512
|
| 40 |
+
- **Parameters**: 8,758,271
|
| 41 |
+
|
| 42 |
+
### Training Configuration
|
| 43 |
+
- **Dataset**: AbstractPhil/imagenet-clip-features-orderly
|
| 44 |
+
- **Model Variant**: ['clip_vit_b32', 'clip_vit_laion_b32']
|
| 45 |
+
- **Epochs**: 10
|
| 46 |
+
- **Batch Size**: 1024
|
| 47 |
+
- **Learning Rate**: 0.01
|
| 48 |
+
- **Rose Loss Weight**: 0.2 β 0.8
|
| 49 |
+
- **Cayley Loss**: True
|
| 50 |
+
|
| 51 |
+
## Performance
|
| 52 |
+
|
| 53 |
+
### Best Results
|
| 54 |
+
- **Validation Accuracy**: 66.69%
|
| 55 |
+
- **Best Epoch**: 0
|
| 56 |
+
- **Final Train Accuracy**: 54.53%
|
| 57 |
+
|
| 58 |
+
### Per-Scale Performance
|
| 59 |
+
- **Scale 256**: 66.69%
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
## Usage
|
| 63 |
+
|
| 64 |
+
### Quick Model Lookup
|
| 65 |
+
|
| 66 |
+
**Check `MODELS_INDEX.json` in the repo root** - it lists all trained models sorted by accuracy with links to weights and configs.
|
| 67 |
+
|
| 68 |
+
### Repository Structure
|
| 69 |
+
|
| 70 |
+
```
|
| 71 |
+
AbstractPhil/david-shared-space/
|
| 72 |
+
βββ MODELS_INDEX.json # π Master index of all models (sorted by accuracy)
|
| 73 |
+
βββ README.md # This file
|
| 74 |
+
βββ best_model.json # Latest best model info
|
| 75 |
+
βββ weights/
|
| 76 |
+
β βββ david_balanced/
|
| 77 |
+
β βββ 20251012_191456/
|
| 78 |
+
β βββ MODEL_SUMMARY.txt # π― Human-readable performance summary
|
| 79 |
+
β βββ training_history.json # π Epoch-by-epoch training curve
|
| 80 |
+
β βββ best_model_acc66.69.safetensors # β Accuracy in filename!
|
| 81 |
+
β βββ best_model_acc66.69_metadata.json
|
| 82 |
+
β βββ final_model.safetensors
|
| 83 |
+
β βββ checkpoint_epoch_X_accYY.YY.safetensors
|
| 84 |
+
β βββ david_config.json
|
| 85 |
+
β βββ train_config.json
|
| 86 |
+
βββ runs/
|
| 87 |
+
βββ david_balanced/
|
| 88 |
+
βββ 20251012_191456/
|
| 89 |
+
βββ events.out.tfevents.* # TensorBoard logs
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Loading the Model
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from geovocab2.train.model.core.david import David, DavidArchitectureConfig
|
| 96 |
+
from huggingface_hub import hf_hub_download
|
| 97 |
+
|
| 98 |
+
# Browse available models in MODELS_INDEX.json first!
|
| 99 |
+
|
| 100 |
+
# Specify model variant and run
|
| 101 |
+
model_name = "david_balanced"
|
| 102 |
+
run_id = "20251012_191456"
|
| 103 |
+
accuracy = "66.69" # From MODELS_INDEX.json
|
| 104 |
+
|
| 105 |
+
# Download config
|
| 106 |
+
config_path = hf_hub_download(
|
| 107 |
+
repo_id="AbstractPhil/david-shared-space",
|
| 108 |
+
filename=f"weights/{model_name}/{run_id}/david_config.json"
|
| 109 |
+
)
|
| 110 |
+
config = DavidArchitectureConfig.from_json(config_path)
|
| 111 |
+
|
| 112 |
+
# Download weights (accuracy in filename!)
|
| 113 |
+
weights_path = hf_hub_download(
|
| 114 |
+
repo_id="AbstractPhil/david-shared-space",
|
| 115 |
+
filename=f"weights/{model_name}/{run_id}/best_model_acc{accuracy}.safetensors"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Download training history (optional - see full training curve)
|
| 119 |
+
history_path = hf_hub_download(
|
| 120 |
+
repo_id="AbstractPhil/david-shared-space",
|
| 121 |
+
filename=f"weights/{model_name}/{run_id}/training_history.json"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Load model
|
| 125 |
+
from safetensors.torch import load_file
|
| 126 |
+
david = David.from_config(config)
|
| 127 |
+
david.load_state_dict(load_file(weights_path))
|
| 128 |
+
david.eval()
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
### Inference
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
import torch
|
| 135 |
+
import torch.nn.functional as F
|
| 136 |
+
|
| 137 |
+
# Assuming you have CLIP features (512-dim for ViT-B/16)
|
| 138 |
+
features = get_clip_features(image) # [1, 512]
|
| 139 |
+
|
| 140 |
+
# Load anchors
|
| 141 |
+
anchors_dict = torch.load("anchors.pth")
|
| 142 |
+
|
| 143 |
+
# Forward pass
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
logits, _ = david(features, anchors_dict)
|
| 146 |
+
predictions = logits.argmax(dim=-1)
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
## Architecture Overview
|
| 150 |
+
|
| 151 |
+
### Multi-Scale Processing
|
| 152 |
+
David processes inputs at multiple scales (256, 512, 768, 1024),
|
| 153 |
+
allowing it to capture both coarse and fine-grained features.
|
| 154 |
+
|
| 155 |
+
### Shared Representation Space
|
| 156 |
+
This variation shares multiple versions of clip-vit models in the same representation space.
|
| 157 |
+
|
| 158 |
+
### Crystal Geometry
|
| 159 |
+
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
|
| 160 |
+
- **Anchor**: Primary class representative
|
| 161 |
+
- **Need**: Complementary direction
|
| 162 |
+
- **Relation**: Contextual alignment
|
| 163 |
+
- **Purpose**: Functional direction
|
| 164 |
+
- **Observer**: Meta-perspective
|
| 165 |
+
|
| 166 |
+
### Rose Loss
|
| 167 |
+
Similarity computation uses role-weighted cosine similarities:
|
| 168 |
+
```
|
| 169 |
+
score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
### Fusion Strategy
|
| 173 |
+
**hierarchical_tree**: Intelligently combines predictions from multiple scales.
|
| 174 |
+
|
| 175 |
+
## Training Details
|
| 176 |
+
|
| 177 |
+
### Loss Components
|
| 178 |
+
- **Cross-Entropy**: Standard classification loss
|
| 179 |
+
- **Rose Loss**: Pentachora role-weighted margin loss (weight: 0.2β0.8)
|
| 180 |
+
- **Cayley Loss**: Geometric regularization (enabled)
|
| 181 |
+
|
| 182 |
+
### Optimization
|
| 183 |
+
- **Optimizer**: AdamW
|
| 184 |
+
- **Weight Decay**: 1e-05
|
| 185 |
+
- **Scheduler**: cosine_restarts
|
| 186 |
+
- **Gradient Clip**: 10.0
|
| 187 |
+
- **Mixed Precision**: False
|
| 188 |
+
|
| 189 |
+
## Citation
|
| 190 |
+
|
| 191 |
+
```bibtex
|
| 192 |
+
@software{david_classifier_2025,
|
| 193 |
+
title = {David: Multi-Scale Crystal Classifier},
|
| 194 |
+
author = {AbstractPhil},
|
| 195 |
+
year = {2025},
|
| 196 |
+
url = {https://huggingface.co/AbstractPhil/david-shared-space},
|
| 197 |
+
note = {Run ID: 20251012_191456}
|
| 198 |
+
}
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
## License
|
| 202 |
+
|
| 203 |
+
MIT License
|
| 204 |
+
|
| 205 |
+
## Acknowledgments
|
| 206 |
+
|
| 207 |
+
Built with crystal lattice geometry and multi-scale deep learning.
|
| 208 |
+
Special thanks to Claude (Anthropic) for debugging assistance.
|
| 209 |
+
|
| 210 |
+
---
|
| 211 |
+
|
| 212 |
+
*Generated on 2025-10-12 19:18:12*
|