File size: 6,656 Bytes
cdff52b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Licensed under the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://github.com/Tencent-Hunyuan/HunyuanImage-3.0/blob/main/LICENSE
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Tuple
from PIL import Image
from torchvision import transforms
from transformers import Siglip2ImageProcessorFast
from .tokenizer_wrapper import ImageInfo, JointImageInfo, ResolutionGroup
def resize_and_crop(image: Image.Image, target_size: Tuple[int, int]) -> Image.Image:
tw, th = target_size
w, h = image.size
tr = th / tw
r = h / w
# resize
if r < tr:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
image = image.resize((resize_width, resize_height), resample=Image.Resampling.LANCZOS)
# center crop
crop_top = int(round((resize_height - th) / 2.0))
crop_left = int(round((resize_width - tw) / 2.0))
image = image.crop((crop_left, crop_top, crop_left + tw, crop_top + th))
return image
class HunyuanImage3ImageProcessor(object):
def __init__(self, config):
self.config = config
min_multiple = getattr(config, "image_min_multiple", 0.5)
max_multiple = getattr(config, "image_max_multiple", 2.0)
step = getattr(config, "image_resolution_step", None)
align = getattr(config, "image_resolution_align", 1)
max_entries = getattr(config, "image_resolution_count", 33)
presets = getattr(config, "image_resolution_presets", None)
self.reso_group = ResolutionGroup(
base_size=config.image_base_size,
step=step,
align=align,
min_multiple=min_multiple,
max_multiple=max_multiple,
max_entries=max_entries,
presets=presets,
)
self.vae_processor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]), # transform to [-1, 1]
])
self.vision_encoder_processor = Siglip2ImageProcessorFast.from_dict(config.vit_processor)
def build_image_info(self, image_size):
# parse image size (HxW, H:W, or <img_ratio_i>)
if isinstance(image_size, str):
if image_size.startswith("<img_ratio_"):
ratio_index = int(image_size.split("_")[-1].rstrip(">"))
reso = self.reso_group[ratio_index]
image_size = reso.height, reso.width
elif 'x' in image_size:
image_size = [int(s) for s in image_size.split('x')]
elif ':' in image_size:
image_size = [int(s) for s in image_size.split(':')]
else:
raise ValueError(
f"`image_size` should be in the format of 'HxW', 'H:W' or <img_ratio_i>, got {image_size}.")
assert len(image_size) == 2, f"`image_size` should be in the format of 'HxW', got {image_size}."
elif isinstance(image_size, (list, tuple)):
assert len(image_size) == 2 and all(isinstance(s, int) for s in image_size), \
f"`image_size` should be a tuple of two integers or a string in the format of 'HxW', got {image_size}."
else:
raise ValueError(f"`image_size` should be a tuple of two integers or a string in the format of 'WxH', "
f"got {image_size}.")
image_width, image_height = self.reso_group.get_target_size(image_size[1], image_size[0])
token_height = image_height // (self.config.vae_downsample_factor[0] * self.config.patch_size)
token_width = image_width // (self.config.vae_downsample_factor[1] * self.config.patch_size)
base_size, ratio_idx = self.reso_group.get_base_size_and_ratio_index(image_size[1], image_size[0])
image_info = ImageInfo(
image_type="gen_image", image_width=image_width, image_height=image_height,
token_width=token_width, token_height=token_height, base_size=base_size, ratio_index=ratio_idx,
)
return image_info
def preprocess(self, image: Image.Image):
# ==== VAE processor ====
image_width, image_height = self.reso_group.get_target_size(image.width, image.height)
resized_image = resize_and_crop(image, (image_width, image_height))
image_tensor = self.vae_processor(resized_image)
token_height = image_height // (self.config.vae_downsample_factor[0] * self.config.patch_size)
token_width = image_width // (self.config.vae_downsample_factor[1] * self.config.patch_size)
base_size, ratio_index = self.reso_group.get_base_size_and_ratio_index(width=image_width, height=image_height)
vae_image_info = ImageInfo(
image_type="vae",
image_tensor=image_tensor.unsqueeze(0), # include batch dim
image_width=image_width, image_height=image_height,
token_width=token_width, token_height=token_height,
base_size=base_size, ratio_index=ratio_index,
)
# ==== ViT processor ====
inputs = self.vision_encoder_processor(image)
image = inputs["pixel_values"].squeeze(0) # seq_len x dim
pixel_attention_mask = inputs["pixel_attention_mask"].squeeze(0) # seq_len
spatial_shapes = inputs["spatial_shapes"].squeeze(0) # 2 (h, w)
vision_encoder_kwargs = dict(
pixel_attention_mask=pixel_attention_mask,
spatial_shapes=spatial_shapes,
)
vision_image_info = ImageInfo(
image_type="vit",
image_tensor=image.unsqueeze(0), # 1 x seq_len x dim
image_width=spatial_shapes[1].item() * self.config.vit_processor["patch_size"],
image_height=spatial_shapes[0].item() * self.config.vit_processor["patch_size"],
token_width=spatial_shapes[1].item(),
token_height=spatial_shapes[0].item(),
image_token_length=self.config.vit_processor["max_num_patches"],
# may not equal to token_width * token_height
)
return JointImageInfo(vae_image_info, vision_image_info, vision_encoder_kwargs)
|