File size: 5,329 Bytes
22a3b73
 
7445207
22a3b73
7445207
22a3b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7445207
 
 
22a3b73
 
7445207
22a3b73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json",
    "version": "0.2.8",
    "changelog": {
        "0.2.8": "enhance metadata with improved descriptions",
        "0.2.7": "update to huggingface hosting",
        "0.2.6": "update tensorrt benchmark results",
        "0.2.5": "enable tensorrt",
        "0.2.4": "update to use monai 1.3.1",
        "0.2.3": "remove meta_dict usage",
        "0.2.2": "add requiremnts for torchvision",
        "0.2.1": "fix the wrong GPU index issue of multi-node",
        "0.2.0": "Update README for how to download dataset",
        "0.1.9": "add RAM warning",
        "0.1.8": "Update README for pretrained weights and save metrics in evaluate",
        "0.1.7": "Update README Formatting",
        "0.1.6": "add non-deterministic note",
        "0.1.5": "update benchmark on A100",
        "0.1.4": "adapt to BundleWorkflow interface",
        "0.1.3": "add name tag",
        "0.1.2": "update the workflow figure",
        "0.1.1": "update to use monai 1.1.0",
        "0.1.0": "complete the model package"
    },
    "monai_version": "1.4.0",
    "pytorch_version": "2.4.0",
    "numpy_version": "1.24.4",
    "optional_packages_version": {
        "scikit-image": "0.23.2",
        "torchvision": "0.19.0",
        "scipy": "1.13.1",
        "tqdm": "4.66.4",
        "pillow": "10.4.0",
        "pytorch-ignite": "0.4.11",
        "tensorboard": "2.17.0",
        "nibabel": "5.2.1"
    },
    "name": "HoVer-Net: Nuclear Segmentation and Classification",
    "task": "Multi-task Nuclear Segmentation and Classification in H&E Histology",
    "description": "A multi-task learning model based on the HoVer-Net architecture that simultaneously performs nuclei segmentation and type classification in H&E-stained histology images. The model processes 256x256 pixel RGB patches and outputs three complementary predictions: binary nuclear segmentation (Dice score: 0.83), hover maps for instance separation, and pixel-level nuclear type classification.",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "CoNSeP Dataset from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/",
    "data_type": "numpy",
    "image_classes": "RGB image with intensity between 0 and 255",
    "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification",
    "pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification",
    "eval_metrics": {
        "Binary Dice": 0.8291
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "magnitude",
                "num_channels": 3,
                "spatial_shape": [
                    "256",
                    "256"
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    255
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "nucleus_prediction": {
                "type": "probability",
                "format": "segmentation",
                "num_channels": 3,
                "spatial_shape": [
                    "164",
                    "164"
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "background",
                    "1": "nuclei"
                }
            },
            "horizontal_vertical": {
                "type": "probability",
                "format": "regression",
                "num_channels": 2,
                "spatial_shape": [
                    "164",
                    "164"
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "horizontal distances map",
                    "1": "vertical distances map"
                }
            },
            "type_prediction": {
                "type": "probability",
                "format": "classification",
                "num_channels": 2,
                "spatial_shape": [
                    "164",
                    "164"
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "background",
                    "1": "type of nucleus for each pixel"
                }
            }
        }
    }
}