{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json", "version": "0.2.8", "changelog": { "0.2.8": "enhance metadata with improved descriptions", "0.2.7": "update to huggingface hosting", "0.2.6": "update tensorrt benchmark results", "0.2.5": "enable tensorrt", "0.2.4": "update to use monai 1.3.1", "0.2.3": "remove meta_dict usage", "0.2.2": "add requiremnts for torchvision", "0.2.1": "fix the wrong GPU index issue of multi-node", "0.2.0": "Update README for how to download dataset", "0.1.9": "add RAM warning", "0.1.8": "Update README for pretrained weights and save metrics in evaluate", "0.1.7": "Update README Formatting", "0.1.6": "add non-deterministic note", "0.1.5": "update benchmark on A100", "0.1.4": "adapt to BundleWorkflow interface", "0.1.3": "add name tag", "0.1.2": "update the workflow figure", "0.1.1": "update to use monai 1.1.0", "0.1.0": "complete the model package" }, "monai_version": "1.4.0", "pytorch_version": "2.4.0", "numpy_version": "1.24.4", "optional_packages_version": { "scikit-image": "0.23.2", "torchvision": "0.19.0", "scipy": "1.13.1", "tqdm": "4.66.4", "pillow": "10.4.0", "pytorch-ignite": "0.4.11", "tensorboard": "2.17.0", "nibabel": "5.2.1" }, "name": "HoVer-Net: Nuclear Segmentation and Classification", "task": "Multi-task Nuclear Segmentation and Classification in H&E Histology", "description": "A multi-task learning model based on the HoVer-Net architecture that simultaneously performs nuclei segmentation and type classification in H&E-stained histology images. The model processes 256x256 pixel RGB patches and outputs three complementary predictions: binary nuclear segmentation (Dice score: 0.83), hover maps for instance separation, and pixel-level nuclear type classification.", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "CoNSeP Dataset from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/", "data_type": "numpy", "image_classes": "RGB image with intensity between 0 and 255", "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification", "pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification", "eval_metrics": { "Binary Dice": 0.8291 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499" ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "num_channels": 3, "spatial_shape": [ "256", "256" ], "dtype": "float32", "value_range": [ 0, 255 ], "is_patch_data": true, "channel_def": { "0": "image" } } }, "outputs": { "nucleus_prediction": { "type": "probability", "format": "segmentation", "num_channels": 3, "spatial_shape": [ "164", "164" ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "background", "1": "nuclei" } }, "horizontal_vertical": { "type": "probability", "format": "regression", "num_channels": 2, "spatial_shape": [ "164", "164" ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "horizontal distances map", "1": "vertical distances map" } }, "type_prediction": { "type": "probability", "format": "classification", "num_channels": 2, "spatial_shape": [ "164", "164" ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "background", "1": "type of nucleus for each pixel" } } } } }