|
|
"""
|
|
|
Variant Calling Pipeline
|
|
|
Process sequencing data to identify genetic variants
|
|
|
"""
|
|
|
|
|
|
from pathlib import Path
|
|
|
from typing import Dict, List, Optional
|
|
|
import yaml
|
|
|
import logging
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class Variant:
|
|
|
"""Represents a genetic variant"""
|
|
|
chromosome: str
|
|
|
position: int
|
|
|
reference: str
|
|
|
alternate: str
|
|
|
quality: float
|
|
|
depth: int
|
|
|
allele_frequency: float
|
|
|
gene: Optional[str] = None
|
|
|
consequence: Optional[str] = None
|
|
|
|
|
|
|
|
|
class VariantCaller:
|
|
|
"""Call variants from sequencing data"""
|
|
|
|
|
|
def __init__(self, config_path: str = "config.yml"):
|
|
|
with open(config_path, 'r') as f:
|
|
|
self.config = yaml.safe_load(f)['pipeline']['variant_calling']
|
|
|
|
|
|
self.min_coverage = self.config['min_coverage']
|
|
|
self.min_allele_frequency = self.config['min_allele_frequency']
|
|
|
self.output_dir = Path(self.config['output_dir'])
|
|
|
self.output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
def call_variants(
|
|
|
self,
|
|
|
alignment_file: Path,
|
|
|
reference_genome: Path,
|
|
|
output_vcf: Optional[Path] = None
|
|
|
) -> Path:
|
|
|
"""
|
|
|
Call variants from aligned sequencing data
|
|
|
|
|
|
Args:
|
|
|
alignment_file: BAM/SAM alignment file
|
|
|
reference_genome: Reference genome FASTA
|
|
|
output_vcf: Output VCF file
|
|
|
|
|
|
Returns:
|
|
|
Path to VCF file
|
|
|
"""
|
|
|
if output_vcf is None:
|
|
|
output_vcf = self.output_dir / f"{alignment_file.stem}_variants.vcf"
|
|
|
|
|
|
logger.info(f"Calling variants from {alignment_file.name}")
|
|
|
|
|
|
|
|
|
|
|
|
variants = self._simulate_variant_calling()
|
|
|
|
|
|
|
|
|
self._write_vcf(variants, output_vcf)
|
|
|
|
|
|
logger.info(f"Identified {len(variants)} variants")
|
|
|
return output_vcf
|
|
|
|
|
|
def _simulate_variant_calling(self) -> List[Variant]:
|
|
|
"""Simulate variant calling for demo purposes"""
|
|
|
|
|
|
variants = [
|
|
|
Variant('chr17', 7577538, 'C', 'T', 35.2, 50, 0.45, 'TP53', 'missense'),
|
|
|
Variant('chr7', 140453136, 'A', 'T', 42.1, 65, 0.52, 'BRAF', 'missense'),
|
|
|
Variant('chr13', 32914438, 'T', 'C', 38.7, 55, 0.48, 'BRCA2', 'missense'),
|
|
|
Variant('chr17', 41244936, 'G', 'A', 40.3, 60, 0.50, 'BRCA1', 'missense'),
|
|
|
Variant('chr3', 178936091, 'G', 'A', 33.5, 48, 0.43, 'PIK3CA', 'missense'),
|
|
|
Variant('chr9', 133748283, 'T', 'G', 37.9, 52, 0.46, 'ABL1', 'missense'),
|
|
|
Variant('chr12', 25398284, 'C', 'T', 39.4, 58, 0.49, 'KRAS', 'missense'),
|
|
|
]
|
|
|
return variants
|
|
|
|
|
|
def _write_vcf(self, variants: List[Variant], output_file: Path):
|
|
|
"""Write variants to VCF format"""
|
|
|
with open(output_file, 'w') as f:
|
|
|
|
|
|
f.write("##fileformat=VCFv4.2\n")
|
|
|
f.write("##source=CancerAtHomeVariantCaller\n")
|
|
|
f.write("##INFO=<ID=DP,Number=1,Type=Integer,Description=\"Total Depth\">\n")
|
|
|
f.write("##INFO=<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">\n")
|
|
|
f.write("##INFO=<ID=GENE,Number=1,Type=String,Description=\"Gene Name\">\n")
|
|
|
f.write("##INFO=<ID=CONS,Number=1,Type=String,Description=\"Consequence\">\n")
|
|
|
f.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n")
|
|
|
|
|
|
|
|
|
for v in variants:
|
|
|
info = f"DP={v.depth};AF={v.allele_frequency:.3f}"
|
|
|
if v.gene:
|
|
|
info += f";GENE={v.gene}"
|
|
|
if v.consequence:
|
|
|
info += f";CONS={v.consequence}"
|
|
|
|
|
|
filter_status = "PASS" if v.depth >= self.min_coverage and v.allele_frequency >= self.min_allele_frequency else "LowQual"
|
|
|
|
|
|
f.write(f"{v.chromosome}\t{v.position}\t.\t{v.reference}\t{v.alternate}\t{v.quality:.1f}\t{filter_status}\t{info}\n")
|
|
|
|
|
|
def filter_variants(
|
|
|
self,
|
|
|
vcf_file: Path,
|
|
|
min_quality: float = 30.0
|
|
|
) -> List[Variant]:
|
|
|
"""Filter variants by quality metrics"""
|
|
|
variants = []
|
|
|
|
|
|
try:
|
|
|
with open(vcf_file, 'r') as f:
|
|
|
for line in f:
|
|
|
if line.startswith('#'):
|
|
|
continue
|
|
|
|
|
|
fields = line.strip().split('\t')
|
|
|
if len(fields) < 8:
|
|
|
continue
|
|
|
|
|
|
quality = float(fields[5])
|
|
|
if quality < min_quality:
|
|
|
continue
|
|
|
|
|
|
|
|
|
info = dict(item.split('=') for item in fields[7].split(';') if '=' in item)
|
|
|
|
|
|
variant = Variant(
|
|
|
chromosome=fields[0],
|
|
|
position=int(fields[1]),
|
|
|
reference=fields[3],
|
|
|
alternate=fields[4],
|
|
|
quality=quality,
|
|
|
depth=int(info.get('DP', 0)),
|
|
|
allele_frequency=float(info.get('AF', 0)),
|
|
|
gene=info.get('GENE'),
|
|
|
consequence=info.get('CONS')
|
|
|
)
|
|
|
variants.append(variant)
|
|
|
|
|
|
logger.info(f"Filtered to {len(variants)} high-quality variants")
|
|
|
return variants
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error filtering variants: {e}")
|
|
|
return []
|
|
|
|
|
|
def annotate_variants(self, variants: List[Variant]) -> List[Variant]:
|
|
|
"""
|
|
|
Annotate variants with functional information
|
|
|
|
|
|
In production, integrate with tools like:
|
|
|
- ANNOVAR
|
|
|
- VEP (Variant Effect Predictor)
|
|
|
- SnpEff
|
|
|
"""
|
|
|
|
|
|
for variant in variants:
|
|
|
if not variant.gene:
|
|
|
variant.gene = "UNKNOWN"
|
|
|
if not variant.consequence:
|
|
|
variant.consequence = "unknown"
|
|
|
|
|
|
return variants
|
|
|
|
|
|
|
|
|
class VariantAnalyzer:
|
|
|
"""Analyze and interpret variants"""
|
|
|
|
|
|
def __init__(self):
|
|
|
self.caller = VariantCaller()
|
|
|
|
|
|
def identify_cancer_variants(self, variants: List[Variant]) -> List[Variant]:
|
|
|
"""Identify known cancer-associated variants"""
|
|
|
|
|
|
cancer_genes = {
|
|
|
'TP53', 'BRCA1', 'BRCA2', 'KRAS', 'EGFR', 'BRAF',
|
|
|
'PIK3CA', 'APC', 'PTEN', 'MYC', 'RB1', 'CDKN2A'
|
|
|
}
|
|
|
|
|
|
cancer_variants = [
|
|
|
v for v in variants
|
|
|
if v.gene and v.gene in cancer_genes
|
|
|
]
|
|
|
|
|
|
logger.info(f"Found {len(cancer_variants)} cancer-associated variants")
|
|
|
return cancer_variants
|
|
|
|
|
|
def calculate_mutation_burden(self, variants: List[Variant]) -> float:
|
|
|
"""Calculate tumor mutation burden (TMB)"""
|
|
|
|
|
|
coding_variants = [v for v in variants if v.consequence in ['missense', 'nonsense', 'frameshift']]
|
|
|
|
|
|
|
|
|
exome_size_mb = 30
|
|
|
tmb = len(coding_variants) / exome_size_mb
|
|
|
|
|
|
logger.info(f"Tumor Mutation Burden: {tmb:.2f} mutations/Mb")
|
|
|
return tmb
|
|
|
|