# Cloud Agents Configuration # Docking@HOME - AI Orchestration Settings # === Agent Settings === agent_name = "DockingOrchestrator" agent_version = "1.0.0" enable_ai_orchestration = true # Enable AI-powered task orchestration # === Model Configuration === model_provider = "huggingface" # huggingface, local model_name = "OpenPeerAI/Cloud-Agents" model_version = "latest" model_temperature = 0.7 # Creativity (0.0 = deterministic, 1.0 = creative) model_max_tokens = 2048 # Maximum tokens per response # === API Settings === # Uncomment and set your API key if using cloud providers # api_key = "YOUR_API_KEY_HERE" # api_endpoint = "https://api.localhost:8080/v1" # Custom endpoint if needed api_timeout_seconds = 60 api_retries = 3 # === Task Orchestration === optimization_strategy = "adaptive" # adaptive, greedy, balanced, ml enable_load_balancing = true # Enable intelligent load balancing enable_auto_scaling = true # Auto-scale worker allocation predict_task_duration = true # Use AI to predict task completion time learn_from_history = true # Learn from past executions # === Resource Optimization === optimize_cpu_allocation = true # Optimize CPU resource allocation optimize_gpu_allocation = true # Optimize GPU resource allocation optimize_memory_usage = true # Optimize memory allocation optimize_network_bandwidth = false # Optimize network usage # === Decision Making === decision_mode = "autonomous" # autonomous, assisted, manual confidence_threshold = 0.75 # Minimum confidence for autonomous decisions require_human_approval = false # Require approval for critical decisions approval_timeout_seconds = 300 # Timeout for human approval # === Task Prioritization === enable_smart_scheduling = true # AI-based task scheduling priority_factors = [ "deadline", "resource_availability", "task_complexity", "user_priority", "cost" ] rebalance_interval_seconds = 60 # Seconds between priority rebalancing # === Learning & Adaptation === enable_reinforcement_learning = true # Enable RL for optimization learning_rate = 0.001 # Learning rate for models exploration_rate = 0.1 # Exploration vs exploitation (epsilon) memory_size = 10000 # Experience replay memory size batch_size = 32 # Training batch size update_frequency = 100 # Model update frequency (steps) # === Performance Metrics === track_metrics = true # Track performance metrics metrics_to_track = [ "task_completion_time", "resource_utilization", "success_rate", "cost_per_task", "throughput" ] # === Prediction Models === enable_task_prediction = true # Predict task requirements enable_failure_prediction = true # Predict potential failures enable_bottleneck_detection = true # Detect performance bottlenecks prediction_confidence_threshold = 0.70 # === Cost Optimization === enable_cost_optimization = true # Optimize operational costs cost_per_cpu_hour = 0.05 # Cost per CPU hour (USD) cost_per_gpu_hour = 0.50 # Cost per GPU hour (USD) cost_per_gb_storage = 0.01 # Cost per GB storage per month (USD) budget_limit_daily = 100.0 # Daily budget limit (USD) # === Auto-scaling === min_workers = 1 # Minimum worker nodes max_workers = 100 # Maximum worker nodes scale_up_threshold = 0.80 # Resource usage to trigger scale up scale_down_threshold = 0.30 # Resource usage to trigger scale down scale_up_increment = 2 # Workers to add when scaling up scale_down_increment = 1 # Workers to remove when scaling down cooldown_period_seconds = 300 # Cooldown between scaling operations # === Anomaly Detection === enable_anomaly_detection = true # Detect anomalies in execution anomaly_threshold = 3.0 # Standard deviations for anomaly alert_on_anomaly = true # Send alerts on detected anomalies # === Collaboration === enable_multi_agent = false # Enable multi-agent coordination agent_communication_protocol = "rest" # rest, grpc, mqtt coordinator_url = "http://localhost:9000" # === Caching & State === cache_predictions = true # Cache AI predictions cache_duration_seconds = 3600 # Cache duration state_persistence = true # Persist agent state state_file = "agent_state.json" # State file path checkpoint_interval_minutes = 10 # Save checkpoint interval # === Monitoring & Observability === enable_telemetry = true # Enable telemetry telemetry_endpoint = "http://localhost:4318" # OpenTelemetry endpoint log_level = "INFO" # DEBUG, INFO, WARNING, ERROR log_predictions = true # Log AI predictions log_decisions = true # Log orchestration decisions # === Rate Limiting === max_requests_per_minute = 100 # Max API requests per minute max_concurrent_predictions = 10 # Max concurrent predictions # === Fallback Behavior === fallback_to_manual = true # Fallback to manual on AI failure fallback_strategy = "conservative" # conservative, aggressive, balanced retry_failed_predictions = true max_prediction_retries = 3 # === Feature Flags === features = { "smart_routing": true, "predictive_scaling": true, "cost_optimization": true, "anomaly_detection": true, "adaptive_learning": true, "multi_objective_optimization": true } # === Experimental Features === experimental_features = { "quantum_optimization": false, "federated_learning": false, "neural_architecture_search": false } # === Security === encrypt_model_data = false # Encrypt model data at rest secure_inference = false # Use secure inference (TEE) audit_decisions = true # Audit all AI decisions