Commit
·
81e08bf
1
Parent(s):
7c15f78
Adding an example of using pretrained model to predict emotion in local audio file (#1)
Browse files- Adding an example of using pretrained model to predict emotion in local audio file (f02201ba227deefa8868a872db7ca70556ae44ef)
Co-authored-by: Marc Maxmeister <[email protected]>
README.md
CHANGED
|
@@ -6,4 +6,56 @@ tags:
|
|
| 6 |
- audio
|
| 7 |
- HUBert
|
| 8 |
---
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- audio
|
| 7 |
- HUBert
|
| 8 |
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
Working example of using pretrained model to predict emotion in local audio file
|
| 12 |
+
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
def predict_emotion_hubert(audio_file):
|
| 16 |
+
""" inspired by an example from https://github.com/m3hrdadfi/soxan """
|
| 17 |
+
from audio_models import HubertForSpeechClassification
|
| 18 |
+
from transformers import Wav2Vec2FeatureExtractor, AutoConfig
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
import torch
|
| 21 |
+
import numpy as np
|
| 22 |
+
from pydub import AudioSegment
|
| 23 |
+
|
| 24 |
+
model = HubertForSpeechClassification.from_pretrained("Rajaram1996/Hubert_emotion") # Downloading: 362M
|
| 25 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
|
| 26 |
+
sampling_rate=16000 # defined by the model; must convert mp3 to this rate.
|
| 27 |
+
config = AutoConfig.from_pretrained("Rajaram1996/Hubert_emotion")
|
| 28 |
+
|
| 29 |
+
def speech_file_to_array(path, sampling_rate):
|
| 30 |
+
# using torchaudio...
|
| 31 |
+
# speech_array, _sampling_rate = torchaudio.load(path)
|
| 32 |
+
# resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
|
| 33 |
+
# speech = resampler(speech_array).squeeze().numpy()
|
| 34 |
+
sound = AudioSegment.from_file(path)
|
| 35 |
+
sound = sound.set_frame_rate(sampling_rate)
|
| 36 |
+
sound_array = np.array(sound.get_array_of_samples())
|
| 37 |
+
return sound_array
|
| 38 |
+
|
| 39 |
+
sound_array = speech_file_to_array(audio_file, sampling_rate)
|
| 40 |
+
inputs = feature_extractor(sound_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
| 41 |
+
inputs = {key: inputs[key].to("cpu").float() for key in inputs}
|
| 42 |
+
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
logits = model(**inputs).logits
|
| 45 |
+
|
| 46 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
| 47 |
+
outputs = [{
|
| 48 |
+
"emo": config.id2label[i],
|
| 49 |
+
"score": round(score * 100, 1)}
|
| 50 |
+
for i, score in enumerate(scores)
|
| 51 |
+
]
|
| 52 |
+
return [row for row in sorted(outputs, key=lambda x:x["score"], reverse=True) if row['score'] != '0.0%'][:2]
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
result = predict_emotion_hubert("male-crying.mp3")
|
| 58 |
+
>>> result
|
| 59 |
+
[{'emo': 'male_sad', 'score': 91.0}, {'emo': 'male_fear', 'score': 4.8}]
|
| 60 |
+
```
|
| 61 |
+
|