XGenerationLab commited on
Commit
c9c8a39
·
verified ·
1 Parent(s): 45a4173

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -62,7 +62,7 @@ transformers >= 4.37.0
62
  Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
63
  Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
64
 
65
- ```
66
 
67
  nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
68
  【用户问题】
@@ -82,7 +82,7 @@ nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并
82
  import torch
83
  from transformers import AutoModelForCausalLM, AutoTokenizer
84
 
85
- model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
86
  model = AutoModelForCausalLM.from_pretrained(
87
  model_name,
88
  torch_dtype=torch.bfloat16,
@@ -118,6 +118,41 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
118
 
119
  ```
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  ## Acknowledgments
123
- If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!
 
 
 
 
 
 
 
 
 
 
 
 
62
  Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
63
  Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
64
 
65
+ ```python
66
 
67
  nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
68
  【用户问题】
 
82
  import torch
83
  from transformers import AutoModelForCausalLM, AutoTokenizer
84
 
85
+ model_name = "XGenerationLab/XiYanSQL-QwenCoder-7B-2502"
86
  model = AutoModelForCausalLM.from_pretrained(
87
  model_name,
88
  torch_dtype=torch.bfloat16,
 
118
 
119
  ```
120
 
121
+ ### Inference with vLLM
122
+ ```python
123
+ from vllm import LLM, SamplingParams
124
+ from transformers import AutoTokenizer
125
+ model_path = "XGenerationLab/XiYanSQL-QwenCoder-7B-2502"
126
+ llm = LLM(model=model_path, tensor_parallel_size=8)
127
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
128
+ sampling_params = SamplingParams(
129
+ n=1,
130
+ temperature=0.1,
131
+ max_tokens=1024
132
+ )
133
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
134
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
135
+ message = [{'role': 'user', 'content': prompt}]
136
+ text = tokenizer.apply_chat_template(
137
+ message,
138
+ tokenize=False,
139
+ add_generation_prompt=True
140
+ )
141
+ outputs = llm.generate([text], sampling_params=sampling_params)
142
+ response = outputs[0].outputs[0].text
143
+ ```
144
+
145
 
146
  ## Acknowledgments
147
+ If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!
148
+ ```bibtex
149
+ @article{XiYanSQL,
150
+ title={XiYan-SQL: A Novel Multi-Generator Framework For Text-to-SQL},
151
+ author={Yifu Liu and Yin Zhu and Yingqi Gao and Zhiling Luo and Xiaoxia Li and Xiaorong Shi and Yuntao Hong and Jinyang Gao and Yu Li and Bolin Ding and Jingren Zhou},
152
+ year={2025},
153
+ eprint={2507.04701},
154
+ archivePrefix={arXiv},
155
+ primaryClass={cs.CL},
156
+ url={https://arxiv.org/abs/2507.04701},
157
+ }
158
+ ```