aiface commited on
Commit
4f4d21a
·
verified ·
1 Parent(s): 753373c

Model save

Browse files
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: answerdotai/ModernBERT-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: ModernBERT-large_nli
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ModernBERT-large_nli
18
+
19
+ This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.6038
22
+ - Accuracy: 0.5787
23
+ - Precision Macro: 0.5794
24
+ - Recall Macro: 0.5790
25
+ - F1 Macro: 0.5792
26
+ - F1 Weighted: 0.5788
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 128
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 20
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
61
+ | 2.1283 | 1.0 | 143 | 1.0136 | 0.4807 | 0.4674 | 0.4835 | 0.4509 | 0.4492 |
62
+ | 1.8848 | 2.0 | 286 | 0.9818 | 0.5202 | 0.5745 | 0.5219 | 0.5042 | 0.5038 |
63
+ | 1.7416 | 3.0 | 429 | 1.1233 | 0.3220 | 0.2102 | 0.3259 | 0.2190 | 0.2174 |
64
+ | 2.2168 | 4.0 | 572 | 1.1135 | 0.3277 | 0.1092 | 0.3333 | 0.1646 | 0.1618 |
65
+ | 2.2099 | 5.0 | 715 | 1.1089 | 0.3277 | 0.1092 | 0.3333 | 0.1646 | 0.1618 |
66
+ | 2.2191 | 6.0 | 858 | 1.1231 | 0.3282 | 0.4426 | 0.3338 | 0.1655 | 0.1627 |
67
+ | 2.2027 | 7.0 | 1001 | 1.0931 | 0.3774 | 0.2508 | 0.3801 | 0.3016 | 0.2993 |
68
+ | 2.1846 | 8.0 | 1144 | 1.0723 | 0.4013 | 0.3861 | 0.3995 | 0.3692 | 0.3705 |
69
+ | 2.1232 | 9.0 | 1287 | 1.0461 | 0.4244 | 0.4225 | 0.4248 | 0.4203 | 0.4202 |
70
+ | 2.0586 | 10.0 | 1430 | 1.0345 | 0.4510 | 0.4495 | 0.4494 | 0.4210 | 0.4220 |
71
+ | 2.0578 | 11.0 | 1573 | 1.0390 | 0.4523 | 0.4797 | 0.4511 | 0.4522 | 0.4525 |
72
+ | 2.0289 | 12.0 | 1716 | 1.0626 | 0.4665 | 0.5296 | 0.4668 | 0.4391 | 0.4389 |
73
+ | 1.5688 | 13.0 | 1859 | 0.8686 | 0.6084 | 0.6082 | 0.6089 | 0.6064 | 0.6061 |
74
+ | 1.2262 | 14.0 | 2002 | 0.9452 | 0.5973 | 0.5972 | 0.5978 | 0.5961 | 0.5958 |
75
+ | 0.6694 | 15.0 | 2145 | 1.2849 | 0.5809 | 0.5809 | 0.5817 | 0.5802 | 0.5798 |
76
+ | 0.2152 | 16.0 | 2288 | 1.9241 | 0.5752 | 0.5760 | 0.5753 | 0.5755 | 0.5753 |
77
+ | 0.043 | 17.0 | 2431 | 2.3196 | 0.5672 | 0.5685 | 0.5673 | 0.5675 | 0.5672 |
78
+ | 0.0074 | 18.0 | 2574 | 2.5393 | 0.5734 | 0.5747 | 0.5736 | 0.5740 | 0.5737 |
79
+ | 0.0015 | 19.0 | 2717 | 2.5970 | 0.5769 | 0.5780 | 0.5772 | 0.5776 | 0.5772 |
80
+ | 0.002 | 20.0 | 2860 | 2.6038 | 0.5787 | 0.5794 | 0.5790 | 0.5792 | 0.5788 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.55.0
86
+ - Pytorch 2.7.0+cu126
87
+ - Datasets 4.0.0
88
+ - Tokenizers 0.21.4
classification_report_test.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ precision recall f1-score support
2
+
3
+ entailment 0.61 0.63 0.62 750
4
+ contradiction 0.60 0.51 0.55 737
5
+ neutral 0.63 0.69 0.66 777
6
+
7
+ accuracy 0.61 2264
8
+ macro avg 0.61 0.61 0.61 2264
9
+ weighted avg 0.61 0.61 0.61 2264
10
+
11
+ Confusion matrix:
12
+ [[473 143 134]
13
+ [176 376 185]
14
+ [128 112 537]]
confusion_matrix_test.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,entailment,contradiction,neutral
2
+ entailment,473,143,134
3
+ contradiction,176,376,185
4
+ neutral,128,112,537
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6852e371c1ab99597a4968a838b32b0dbd9268776f8c33617d8f4f8a7ae9083b
3
  size 1583355740
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:439d96eac3b56686592174be585bdcbaadd2801798d4f3ec93fe5dcaa91e482c
3
  size 1583355740
model_predict.csv ADDED
The diff for this file is too large to render. See raw diff