Model save
Browse files- README.md +86 -0
- classification_report_test.txt +14 -0
- confusion_matrix_test.csv +4 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
base_model: FPTAI/vibert-base-cased
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
model-index:
|
| 9 |
+
- name: vi-bert-base_v1
|
| 10 |
+
results: []
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# vi-bert-base_v1
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [FPTAI/vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased) on an unknown dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 0.4995
|
| 21 |
+
- Accuracy: 0.9292
|
| 22 |
+
- Precision Macro: 0.8368
|
| 23 |
+
- Recall Macro: 0.7769
|
| 24 |
+
- F1 Macro: 0.8000
|
| 25 |
+
- F1 Weighted: 0.9259
|
| 26 |
+
|
| 27 |
+
## Model description
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Intended uses & limitations
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training and evaluation data
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Training procedure
|
| 40 |
+
|
| 41 |
+
### Training hyperparameters
|
| 42 |
+
|
| 43 |
+
The following hyperparameters were used during training:
|
| 44 |
+
- learning_rate: 3e-05
|
| 45 |
+
- train_batch_size: 64
|
| 46 |
+
- eval_batch_size: 64
|
| 47 |
+
- seed: 42
|
| 48 |
+
- gradient_accumulation_steps: 2
|
| 49 |
+
- total_train_batch_size: 128
|
| 50 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- num_epochs: 20
|
| 53 |
+
- mixed_precision_training: Native AMP
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
|
| 59 |
+
| 0.5604 | 1.0 | 90 | 0.2596 | 0.9128 | 0.9000 | 0.6666 | 0.6788 | 0.8972 |
|
| 60 |
+
| 0.2258 | 2.0 | 180 | 0.2182 | 0.9286 | 0.8216 | 0.8017 | 0.8109 | 0.9275 |
|
| 61 |
+
| 0.1532 | 3.0 | 270 | 0.2312 | 0.9198 | 0.7940 | 0.7902 | 0.7919 | 0.9195 |
|
| 62 |
+
| 0.123 | 4.0 | 360 | 0.2432 | 0.9311 | 0.8607 | 0.8000 | 0.8238 | 0.9286 |
|
| 63 |
+
| 0.0785 | 5.0 | 450 | 0.2592 | 0.9255 | 0.8450 | 0.7784 | 0.8037 | 0.9222 |
|
| 64 |
+
| 0.0628 | 6.0 | 540 | 0.3075 | 0.9280 | 0.8358 | 0.7765 | 0.7993 | 0.9247 |
|
| 65 |
+
| 0.0457 | 7.0 | 630 | 0.3155 | 0.9255 | 0.8118 | 0.7996 | 0.8053 | 0.9247 |
|
| 66 |
+
| 0.034 | 8.0 | 720 | 0.3924 | 0.9248 | 0.8212 | 0.7656 | 0.7870 | 0.9213 |
|
| 67 |
+
| 0.0271 | 9.0 | 810 | 0.3776 | 0.9242 | 0.8211 | 0.7782 | 0.7957 | 0.9216 |
|
| 68 |
+
| 0.0207 | 10.0 | 900 | 0.4209 | 0.9274 | 0.8067 | 0.8094 | 0.8080 | 0.9275 |
|
| 69 |
+
| 0.0189 | 11.0 | 990 | 0.4373 | 0.9255 | 0.7988 | 0.7957 | 0.7971 | 0.9252 |
|
| 70 |
+
| 0.0145 | 12.0 | 1080 | 0.4010 | 0.9349 | 0.8392 | 0.8228 | 0.8304 | 0.9341 |
|
| 71 |
+
| 0.0083 | 13.0 | 1170 | 0.4337 | 0.9242 | 0.8237 | 0.7988 | 0.8100 | 0.9228 |
|
| 72 |
+
| 0.004 | 14.0 | 1260 | 0.4571 | 0.9318 | 0.8491 | 0.7828 | 0.8080 | 0.9285 |
|
| 73 |
+
| 0.0081 | 15.0 | 1350 | 0.4862 | 0.9286 | 0.8298 | 0.7857 | 0.8035 | 0.9261 |
|
| 74 |
+
| 0.0027 | 16.0 | 1440 | 0.4788 | 0.9280 | 0.8348 | 0.7924 | 0.8103 | 0.9258 |
|
| 75 |
+
| 0.0029 | 17.0 | 1530 | 0.4797 | 0.9305 | 0.8339 | 0.7903 | 0.8085 | 0.9281 |
|
| 76 |
+
| 0.003 | 18.0 | 1620 | 0.4877 | 0.9280 | 0.8238 | 0.7807 | 0.7984 | 0.9253 |
|
| 77 |
+
| 0.0013 | 19.0 | 1710 | 0.4966 | 0.9286 | 0.8363 | 0.7765 | 0.7996 | 0.9253 |
|
| 78 |
+
| 0.0014 | 20.0 | 1800 | 0.4995 | 0.9292 | 0.8368 | 0.7769 | 0.8000 | 0.9259 |
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
### Framework versions
|
| 82 |
+
|
| 83 |
+
- Transformers 4.55.0
|
| 84 |
+
- Pytorch 2.7.0+cu126
|
| 85 |
+
- Datasets 4.0.0
|
| 86 |
+
- Tokenizers 0.21.4
|
classification_report_test.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
precision recall f1-score support
|
| 2 |
+
|
| 3 |
+
negative 0.91 0.96 0.94 1409
|
| 4 |
+
neutral 0.56 0.42 0.48 167
|
| 5 |
+
positive 0.95 0.93 0.94 1590
|
| 6 |
+
|
| 7 |
+
accuracy 0.92 3166
|
| 8 |
+
macro avg 0.81 0.77 0.78 3166
|
| 9 |
+
weighted avg 0.91 0.92 0.91 3166
|
| 10 |
+
|
| 11 |
+
Confusion matrix:
|
| 12 |
+
[[1350 21 38]
|
| 13 |
+
[ 53 70 44]
|
| 14 |
+
[ 75 34 1481]]
|
confusion_matrix_test.csv
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
,negative,neutral,positive
|
| 2 |
+
negative,1350,21,38
|
| 3 |
+
neutral,53,70,44
|
| 4 |
+
positive,75,34,1481
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 461450244
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:feec4e8868076e1a4f0940255e3a89bcad7c82a49503399ef54c715276f3e2f9
|
| 3 |
size 461450244
|