aiface commited on
Commit
fd5936f
·
verified ·
1 Parent(s): ac3c878

Model save

Browse files
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: FPTAI/vibert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vi-bert-base_v1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vi-bert-base_v1
17
+
18
+ This model is a fine-tuned version of [FPTAI/vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4995
21
+ - Accuracy: 0.9292
22
+ - Precision Macro: 0.8368
23
+ - Recall Macro: 0.7769
24
+ - F1 Macro: 0.8000
25
+ - F1 Weighted: 0.9259
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 64
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 128
50
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 20
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:|
59
+ | 0.5604 | 1.0 | 90 | 0.2596 | 0.9128 | 0.9000 | 0.6666 | 0.6788 | 0.8972 |
60
+ | 0.2258 | 2.0 | 180 | 0.2182 | 0.9286 | 0.8216 | 0.8017 | 0.8109 | 0.9275 |
61
+ | 0.1532 | 3.0 | 270 | 0.2312 | 0.9198 | 0.7940 | 0.7902 | 0.7919 | 0.9195 |
62
+ | 0.123 | 4.0 | 360 | 0.2432 | 0.9311 | 0.8607 | 0.8000 | 0.8238 | 0.9286 |
63
+ | 0.0785 | 5.0 | 450 | 0.2592 | 0.9255 | 0.8450 | 0.7784 | 0.8037 | 0.9222 |
64
+ | 0.0628 | 6.0 | 540 | 0.3075 | 0.9280 | 0.8358 | 0.7765 | 0.7993 | 0.9247 |
65
+ | 0.0457 | 7.0 | 630 | 0.3155 | 0.9255 | 0.8118 | 0.7996 | 0.8053 | 0.9247 |
66
+ | 0.034 | 8.0 | 720 | 0.3924 | 0.9248 | 0.8212 | 0.7656 | 0.7870 | 0.9213 |
67
+ | 0.0271 | 9.0 | 810 | 0.3776 | 0.9242 | 0.8211 | 0.7782 | 0.7957 | 0.9216 |
68
+ | 0.0207 | 10.0 | 900 | 0.4209 | 0.9274 | 0.8067 | 0.8094 | 0.8080 | 0.9275 |
69
+ | 0.0189 | 11.0 | 990 | 0.4373 | 0.9255 | 0.7988 | 0.7957 | 0.7971 | 0.9252 |
70
+ | 0.0145 | 12.0 | 1080 | 0.4010 | 0.9349 | 0.8392 | 0.8228 | 0.8304 | 0.9341 |
71
+ | 0.0083 | 13.0 | 1170 | 0.4337 | 0.9242 | 0.8237 | 0.7988 | 0.8100 | 0.9228 |
72
+ | 0.004 | 14.0 | 1260 | 0.4571 | 0.9318 | 0.8491 | 0.7828 | 0.8080 | 0.9285 |
73
+ | 0.0081 | 15.0 | 1350 | 0.4862 | 0.9286 | 0.8298 | 0.7857 | 0.8035 | 0.9261 |
74
+ | 0.0027 | 16.0 | 1440 | 0.4788 | 0.9280 | 0.8348 | 0.7924 | 0.8103 | 0.9258 |
75
+ | 0.0029 | 17.0 | 1530 | 0.4797 | 0.9305 | 0.8339 | 0.7903 | 0.8085 | 0.9281 |
76
+ | 0.003 | 18.0 | 1620 | 0.4877 | 0.9280 | 0.8238 | 0.7807 | 0.7984 | 0.9253 |
77
+ | 0.0013 | 19.0 | 1710 | 0.4966 | 0.9286 | 0.8363 | 0.7765 | 0.7996 | 0.9253 |
78
+ | 0.0014 | 20.0 | 1800 | 0.4995 | 0.9292 | 0.8368 | 0.7769 | 0.8000 | 0.9259 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.55.0
84
+ - Pytorch 2.7.0+cu126
85
+ - Datasets 4.0.0
86
+ - Tokenizers 0.21.4
classification_report_test.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ precision recall f1-score support
2
+
3
+ negative 0.91 0.96 0.94 1409
4
+ neutral 0.56 0.42 0.48 167
5
+ positive 0.95 0.93 0.94 1590
6
+
7
+ accuracy 0.92 3166
8
+ macro avg 0.81 0.77 0.78 3166
9
+ weighted avg 0.91 0.92 0.91 3166
10
+
11
+ Confusion matrix:
12
+ [[1350 21 38]
13
+ [ 53 70 44]
14
+ [ 75 34 1481]]
confusion_matrix_test.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,negative,neutral,positive
2
+ negative,1350,21,38
3
+ neutral,53,70,44
4
+ positive,75,34,1481
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b402f1cf72b3ce7116af92f92fbf0be82f9cd9c09b685a65948255411e7b4446
3
  size 461450244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feec4e8868076e1a4f0940255e3a89bcad7c82a49503399ef54c715276f3e2f9
3
  size 461450244