--- license: mit base_model: - HooshvareLab/bert-fa-base-uncased tags: - persian - comments - delivery - bert - bert-persian language: - fa metrics: - accuracy - f1 pipeline_tag: text-classification --- # Persian Sentiment Analysis for Delivery Complaints ## 📌 Introduction This model is fine-tuned **HooshvareLab/bert-fa-base-uncased** model to classify Persian comments related to delivery complaints. The model predicts whether a comment is about a negative delivery experience or not. ## 📊 Dataset The model was fine-tuned using the ** Basalam comments ** dataset from Kaggle: [📂 Basalam Comments Dataset](https://www.kaggle.com/datasets/alirezaazizkhani/labeled-persian-comments) This dataset contains Persian comments labeled as: - **1 (Bad Delivery Complaint)**: The comment expresses dissatisfaction with delivery service. - **0 (Not a Delivery Complaint)**: The comment is unrelated to delivery issues. ## 🛠 Training Details - **Base Model**: `HooshvareLab/bert-fa-base-uncased` - **Fine-Tuning Dataset**: Basalam comments - **[NoteBook](https://www.kaggle.com/code/alirezaazizkhani/fine-tune-parsbert-for-bad-delivery)** - **Evaluation Metrics**: - **Accuracy**: `91%` - **F1-score**: `87%` ## 📥 How to Use You can load and use the fine-tuned model as follows: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch def classify_comment(text): model_name = "alireza-2003/bert_fa_bad_delivery" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) prediction = torch.argmax(outputs.logits).item() return "Bad Delivery Complaint" if prediction == 1 else "Not a Complaint" comment = "بسته من خیلی دیر رسید و اصلا راضی نبودم!" print(classify_comment(comment)) ``` ## 📌 Next Steps - Further fine-tuning with more diverse Persian datasets. - Improve model performance by handling edge cases better. - Deploy as an API for real-time classification. --- 📝 **Author**: [Alireza] 📅 **Last Updated**: [2/16/2025] 🔗 **Dataset**: [Kaggle Dataset](https://www.kaggle.com/datasets/alirezaazizkhani/labeled-persian-comments)