Create scidtb.py
Browse files
scidtb.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
from datasets import BuilderConfig, SplitGenerator
|
| 8 |
+
|
| 9 |
+
_CITATION = """\
|
| 10 |
+
@article{yang2018scidtb,
|
| 11 |
+
title={Scidtb: Discourse dependency treebank for scientific abstracts},
|
| 12 |
+
author={Yang, An and Li, Sujian},
|
| 13 |
+
journal={arXiv preprint arXiv:1806.03653},
|
| 14 |
+
year={2018}
|
| 15 |
+
}
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
_DESCRIPTION = """Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question
|
| 19 |
+
answering. SciDTB is a domain-specific discourse treebank annotated on scientific articles.
|
| 20 |
+
Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is
|
| 21 |
+
flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework,
|
| 22 |
+
annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating
|
| 23 |
+
discourse dependency parsers, on which we provide several baselines as fundamental work."""
|
| 24 |
+
|
| 25 |
+
_URL = "https://codeload.github.com/PKU-TANGENT/SciDTB/zip/refs/heads/master"
|
| 26 |
+
_HOMEPAGE = "https://github.com/PKU-TANGENT/SciDTB"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class SciDTBConfig(BuilderConfig):
|
| 31 |
+
"""BuilderConfig for SciDTB."""
|
| 32 |
+
|
| 33 |
+
def __init__(self, subdirectory_mapping, encoding, **kwargs):
|
| 34 |
+
super(SciDTBConfig, self).__init__(**kwargs)
|
| 35 |
+
self.subdirectory_mapping = subdirectory_mapping
|
| 36 |
+
self.encoding = encoding
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class SciDTBDataset(datasets.GeneratorBasedBuilder):
|
| 40 |
+
"""Scientific Discourse Treebank Dataset"""
|
| 41 |
+
|
| 42 |
+
BUILDER_CONFIGS = [
|
| 43 |
+
SciDTBConfig(
|
| 44 |
+
name="SciDTB",
|
| 45 |
+
version=datasets.Version("1.0.0", ""),
|
| 46 |
+
description=_DESCRIPTION,
|
| 47 |
+
subdirectory_mapping={
|
| 48 |
+
"train": "SciDTB-master/dataset/train",
|
| 49 |
+
"dev": "SciDTB-master/dataset/dev/gold",
|
| 50 |
+
"test": "SciDTB-master/dataset/test/gold",
|
| 51 |
+
},
|
| 52 |
+
encoding="utf-8-sig",
|
| 53 |
+
),
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
def _info(self):
|
| 57 |
+
features = datasets.Features(
|
| 58 |
+
{
|
| 59 |
+
"root": datasets.Sequence(
|
| 60 |
+
{
|
| 61 |
+
"id": datasets.Value("int32"),
|
| 62 |
+
"parent": datasets.Value("int32"),
|
| 63 |
+
"text": datasets.Value("string"),
|
| 64 |
+
"relation": datasets.Value("string"),
|
| 65 |
+
}
|
| 66 |
+
),
|
| 67 |
+
"file_name": datasets.Value("string"),
|
| 68 |
+
}
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
return datasets.DatasetInfo(
|
| 72 |
+
description=_DESCRIPTION,
|
| 73 |
+
features=features,
|
| 74 |
+
homepage=_HOMEPAGE,
|
| 75 |
+
citation=_CITATION,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def _split_generators(self, dl_manager):
|
| 79 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
| 80 |
+
return [
|
| 81 |
+
SplitGenerator(
|
| 82 |
+
name=split,
|
| 83 |
+
# These kwargs will be passed to _generate_examples
|
| 84 |
+
gen_kwargs={
|
| 85 |
+
"dir_path": os.path.join(data_dir, subdir),
|
| 86 |
+
},
|
| 87 |
+
)
|
| 88 |
+
for split, subdir in self.config.subdirectory_mapping.items()
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
def _generate_examples(self, dir_path):
|
| 92 |
+
_files = glob.glob(f"{dir_path}/*.dep")
|
| 93 |
+
for file_path in _files:
|
| 94 |
+
with open(file_path, mode="r", encoding=self.config.encoding) as f:
|
| 95 |
+
annotations = json.load(f)
|
| 96 |
+
annotations["file_name"] = os.path.basename(file_path)
|
| 97 |
+
yield annotations["file_name"], annotations
|