import re import json, time, random, torch from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer, AutoTokenizer # from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig from tqdm import tqdm import jieba # from nltk.corpus import stopwords # from src.helper import * from importlib import import_module import pickle as pkl import time from datetime import timedelta MAX_VOCAB_SIZE = 10000 UNK, PAD = '', '' def token_to_index(token, config): vocab = pkl.load(open(config.vocab_path, 'rb')) # print(f"Vocab size: {len(vocab)}") words_line = [] if len(token) < config.pad_size: token.extend([PAD] * (config.pad_size - len(token))) else: token = token[:config.pad_size] # word to id for word in token: words_line.append(vocab.get(word, vocab.get(UNK))) return words_line # 获取dirty_word的索引 def get_dirty_words(path): with open(path, 'r') as f: data = json.load(f) dirty_words = list(data.values()) return dirty_words def get_all_dirty_words(base_path): all_dirty_words = [] paths = ["general.json", "LGBT.json", "region.json", "sexism.json", "racism.json"] for i in paths: all_dirty_words.append(get_dirty_words(base_path + i)) return all_dirty_words def get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index): for dirty_word in dirty_words: for index, token in enumerate(text_idx): if token == 0: break if token != dirty_word[0]: # 第一个字符不是dirty_word的词首 continue else: flag = 1 start_index = index end_index = index+1 for i in range(len(dirty_word[1:])): if end_index >= len(text_idx): # 越界 flag = 0 break if text_idx[end_index] != dirty_word[1+i]: # 后续单词非dirty词 flag = 0 break end_index += 1 if flag: for dirty_index in range(start_index, end_index): # 对含脏词的span打上类别label toxic_ids[dirty_index] = toxic_index # print(toxic_ids) return toxic_ids def get_all_toxic_id(pad_size, text_idx, all_dirty_words): toxic_ids = [0 for i in range(pad_size)] for toxic_index, dirty_words in enumerate(all_dirty_words): toxic_ids = get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index+1) return toxic_ids class Datasets(Dataset): ''' The dataset based on Bert. ''' def __init__(self, kwargs, data_name, add_special_tokens=True, not_test=True): self.kwargs = kwargs self.not_test = not_test self.data_name = data_name self.lexicon_base_path = kwargs.lexicon_path self.max_tok_len = kwargs.pad_size self.add_special_tokens = add_special_tokens # self.tokenizer = BertTokenizer.from_pretrained('resources/scibert_scivocab_cased') # self.tokenizer = BertTokenizer.from_pretrained(kwargs.model_name) # BERT/Roberta self.tokenizer = AutoTokenizer.from_pretrained(kwargs.model_name) # ChineseBERT # self.tokenizer = ChineseBertTokenizerFast.from_pretrained(kwargs.model_name) # self.word2vec_path = kwargs.word2vec_path with open(data_name, 'r') as f: self.data_file = json.load(f) self.preprocess_data() def preprocess_data(self): print('Preprocessing Data {} ...'.format(self.data_name)) # word2idx, embedding_matrix = load_word2vec_matrix(self.word2vec_path) data_time_start=time.time() all_dirty_words = get_all_dirty_words(self.lexicon_base_path) for row in tqdm(self.data_file): ori_text = row['content'] text = self.tokenizer(ori_text, add_special_tokens=self.add_special_tokens, max_length=int(self.max_tok_len), padding='max_length', truncation=True) # For BERT row['text_idx'] = text['input_ids'] row['text_ids'] = text['token_type_ids'] row['text_mask'] = text['attention_mask'] row['toxic_ids'] = get_all_toxic_id(self.max_tok_len, row['text_idx'], all_dirty_words) # for glove # sub_text = re.sub(u"([^\u0030-\u0039\u0041-\u005a\u0061-\u007a])"," ",ori_text) # text_token = [w for w in ori_text] # row["text_token_ids"] = token_to_index(text_token, self.kwargs) # row["text_token_len"] = len(row["text_token_ids"]) # row["text_token_ids"] = pad_token_seq(row["text_token_ids"], self.max_tok_len) data_time_end = time.time() print("... finished preprocessing cost {} ".format(data_time_end-data_time_start)) # def get_key(self, index): # path = "data/label/level_" + str(index) + '.json' # with open(path, 'r+') as file: # content=file.read() # key = json.loads(content) # return key # def convert_one_hot(self, data, one_hot, length): # data_ = [0 for i in range(length)] # for i in data: # data_[one_hot[i]] = 1 # return data_ def __len__(self): return len(self.data_file) def __getitem__(self, idx, corpus=None): row = self.data_file[idx] sample = { # For BERT 'text_idx': row['text_idx'], 'text_ids': row['text_ids'], 'text_mask': row['text_mask'], 'toxic_ids': row['toxic_ids'], # For GloVe # 'text_token_ids': row["text_token_ids"] 'toxic': row["toxic_one_hot"], 'toxic_type': row["toxic_type_one_hot"], 'expression': row["expression_one_hot"], 'target': row["target"] } # For label # sample['label'] = row['label'] return sample class Dataloader(DataLoader): ''' A batch sampler of a dataset. ''' def __init__(self, data, batch_size, shuffle=True, SEED=0): self.data = data self.batch_size = batch_size self.shuffle = shuffle self.SEED = SEED random.seed(self.SEED) self.indices = list(range(len(data))) if shuffle: random.shuffle(self.indices) self.batch_num = 0 def __len__(self): return int(len(self.data) / float(self.batch_size)) def num_batches(self): return len(self.data) / float(self.batch_size) def __iter__(self): self.indices = list(range(len(self.data))) if self.shuffle: random.shuffle(self.indices) return self def __next__(self): if self.indices != []: idxs = self.indices[:self.batch_size] batch = [self.data.__getitem__(i) for i in idxs] self.indices = self.indices[self.batch_size:] return batch else: raise StopIteration def get(self): self.reset() return self.__next__() def reset(self): self.indices = list(range(len(self.data))) if self.shuffle: random.shuffle(self.indices) def to_tensor(batch): ''' Convert a batch data into tensor ''' args = {} # For label # args["label"] = torch.tensor([b['label'] for b in batch]) # For BERT args['text_idx'] = torch.tensor([b['text_idx'] for b in batch]) args['text_ids'] = torch.tensor([b['text_ids'] for b in batch]) args['text_mask'] = torch.tensor([b['text_mask'] for b in batch]) args['toxic_ids'] = torch.tensor([b['toxic_ids'] for b in batch]) # For GloVe # args['text_token_len'] = torch.tensor([b['text_token_len'] for b in batch]) # args['text_token_ids'] = torch.tensor([b['text_token_ids'] for b in batch]) args['toxic'] = torch.tensor([b['toxic'] for b in batch]) args['toxic_type'] = torch.tensor([b['toxic_type'] for b in batch]) args['expression'] = torch.tensor([b['expression'] for b in batch]) args['target'] = torch.tensor([b['target'] for b in batch]) return args def get_time_dif(start_time): """获取已使用时间""" end_time = time.time() time_dif = end_time - start_time return timedelta(seconds=int(round(time_dif))) def convert_onehot(config, label): onehot_label = [0 for i in range(config.num_classes)] onehot_label[int(label)] = 1 return onehot_label