|
|
import os
|
|
|
import numpy as np
|
|
|
import datasets
|
|
|
|
|
|
|
|
|
_DESCRIPTION = """
|
|
|
VOYA Vietnamese Sign Language (VSL) dataset.
|
|
|
Dataset gồm các chuỗi keypoints đã trích xuất bằng MediaPipe cho nhận dạng ngôn ngữ ký hiệu.
|
|
|
Mỗi sample có shape (60, 1605), lưu trong 'sequences', với nhãn tương ứng trong 'labels'.
|
|
|
"""
|
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/Kateht/VOYA_VSL"
|
|
|
_LICENSE = "MIT"
|
|
|
_CITATION = """
|
|
|
@misc{voya_vsl_2025,
|
|
|
author = {Kateht et al.},
|
|
|
title = {VOYA Vietnamese Sign Language Dataset},
|
|
|
year = {2025},
|
|
|
publisher = {Hugging Face},
|
|
|
howpublished = {\\url{https://huggingface.co/datasets/Kateht/VOYA_VSL}}
|
|
|
}
|
|
|
"""
|
|
|
|
|
|
|
|
|
class VOYAVSLConfig(datasets.BuilderConfig):
|
|
|
def __init__(self, **kwargs):
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
class VOYAVSL(datasets.GeneratorBasedBuilder):
|
|
|
BUILDER_CONFIGS = [
|
|
|
VOYAVSLConfig(
|
|
|
name="default",
|
|
|
version=datasets.Version("1.0.0"),
|
|
|
description="VOYA Vietnamese Sign Language dataset",
|
|
|
)
|
|
|
]
|
|
|
|
|
|
def _info(self):
|
|
|
return datasets.DatasetInfo(
|
|
|
description=_DESCRIPTION,
|
|
|
features=datasets.Features(
|
|
|
{
|
|
|
"sequences": datasets.Array2D(
|
|
|
shape=(60, 1605), dtype="float32"
|
|
|
),
|
|
|
"labels": datasets.Value("int32"),
|
|
|
}
|
|
|
),
|
|
|
supervised_keys=("sequences", "labels"),
|
|
|
homepage=_HOMEPAGE,
|
|
|
license=_LICENSE,
|
|
|
citation=_CITATION,
|
|
|
)
|
|
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract(
|
|
|
"https://huggingface.co/datasets/Kateht/VOYA_VSL/resolve/main/Merged"
|
|
|
)
|
|
|
return [
|
|
|
datasets.SplitGenerator(
|
|
|
name=datasets.Split.TRAIN,
|
|
|
gen_kwargs={"data_dir": data_dir},
|
|
|
),
|
|
|
]
|
|
|
|
|
|
def _generate_examples(self, data_dir):
|
|
|
idx = 0
|
|
|
for fname in sorted(os.listdir(data_dir)):
|
|
|
if not fname.endswith(".npz"):
|
|
|
continue
|
|
|
fpath = os.path.join(data_dir, fname)
|
|
|
data = np.load(fpath)
|
|
|
|
|
|
sequences, labels = data["sequences"], data["labels"]
|
|
|
for seq, label in zip(sequences, labels):
|
|
|
yield idx, {
|
|
|
"sequences": seq.astype("float32"),
|
|
|
"labels": int(label),
|
|
|
}
|
|
|
idx += 1
|
|
|
|