File size: 10,068 Bytes
96431be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
<h1 align="center">
  📷 CAMS: A Large-Scale Chinese Attribute-based Multi-faceted Summarization Dataset
</h1>
<p align="center">
  <a href="https://github.com/Mxoder/Maxs-Awesome-Datasets" target="_blank">💻 Github Repo</a> <br>
  <a href="https://huggingface.co/datasets/Mxode/CAMS" target="_blank">简体中文</a> | English <br>
</p>


---

## Introduction

CAMS (**C**hinese **A**ttribute-based **M**ulti-faceted **S**ummarization) is a large-scale Chinese summarization dataset designed to advance research in long-document summarization. With the rapid development of Large Language Models (LLMs), high-quality, large-scale training data has become crucial, especially for non-English languages. CAMS aims to fill the gap in the field of Chinese long-text summarization.

The dataset contains **1 million** high-quality, long Chinese articles. Each article is paired with three summaries of different granularities and a rich set of attribute labels.

### Key Features

- **Focus on Long Documents**: The articles in the dataset have an average length of over 1,500 characters, providing a challenging platform for training and evaluating long-text summarization models.
- **Multi-Level Summaries**: Each article comes with three hierarchically structured summaries:
    - **Long Summary**: A detailed and comprehensive summary covering the key information of the original text.
    - **Medium Summary**: A concise overview of the article's core points.
    - **Short Summary**: A one-sentence summary of the article's central idea.
- **Rich Attribute Annotations**: Each article has been annotated with multi-dimensional attributes, including:
    - **Keywords**
    - **Statement Type**: Factual Statement vs. Opinion Expression
    - **Sentiment**: Positive, Somewhat Positive, Neutral, Somewhat Negative, Negative
    - **Formality**: Formal vs. Colloquial
    - **Tense**: Past, Present, Future

We hope the CAMS dataset will foster research and innovation in areas such as controllable summarization, attribute-aware generation, and long-text understanding.





## 📊 Data Statistics

### Basic Information

To better illustrate the basic statistics of CAMS, we compare it with other mainstream Chinese and English summarization datasets.

<table>
  <thead>
    <tr>
      <th style="text-align: left;"><strong>Dataset</strong></th>
      <th style="text-align: left;"><strong>Size</strong></th>
      <th style="text-align: left;"><strong>Avg. Doc Length</strong></th>
      <th style="text-align: left;"><strong>Avg. Summary Length</strong></th>
      <th style="text-align: left;"><strong>Avg. #Keywords</strong></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td colspan="5" style="text-align: center;"><strong>English</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">NYT</td>
      <td style="text-align: left;">655K</td>
      <td style="text-align: left;">552.1</td>
      <td style="text-align: left;">42.8</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">CNNDM</td>
      <td style="text-align: left;">312K</td>
      <td style="text-align: left;">791.7</td>
      <td style="text-align: left;">55.2</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">Newsroom</td>
      <td style="text-align: left;">1.0M</td>
      <td style="text-align: left;">765.6</td>
      <td style="text-align: left;">30.2</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td colspan="5" style="text-align: center;"><strong>Chinese</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">LCSTS</td>
      <td style="text-align: left;">2.4M</td>
      <td style="text-align: left;">103.7</td>
      <td style="text-align: left;">17.9</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">CLTS</td>
      <td style="text-align: left;">185K</td>
      <td style="text-align: left;">1363.7</td>
      <td style="text-align: left;">58.1</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">CNewSum</td>
      <td style="text-align: left;">396K</td>
      <td style="text-align: left;">730.4</td>
      <td style="text-align: left;">35.1</td>
      <td style="text-align: left;">-</td>
    </tr>
    <tr>
      <td style="text-align: left;">CSL</td>
      <td style="text-align: left;">396K</td>
      <td style="text-align: left;">206.0</td>
      <td style="text-align: left;">19.0</td>
      <td style="text-align: left;">5.1</td>
    </tr>
    <tr>
      <td style="text-align: left;"><strong>CAMS</strong></td>
      <td style="text-align: left;"><strong>1.0M</strong></td>
      <td style="text-align: left;"><strong>1571.4</strong></td>
      <td style="text-align: left;"><strong>60.0 (S)</strong> <br><strong>185.7 (M)</strong> <br><strong>428.1 (L)</strong></td>
      <td style="text-align: left;"><strong>14.3</strong></td>
    </tr>
  </tbody>
</table>

### Topic Distribution

CAMS covers 30 distinct topics, where the `key` is the field name in the dataset and the `value` is the topic content:

```json
{
    "other_manufacturing": "Other Manufacturing",
    "automobile": "Automobile",
    "biomedicine": "Biomedicine",
    "computer_communication": "Computer Communication",
    "subject_education_education": "Education",
    "finance_economics": "Finance & Economics",
    "transportation": "Transportation",
    "literature_emotion": "Literature & Emotion",
    "water_resources_ocean": "Water Resources",
    "aerospace": "Aerospace",
    "technology_scientific_research": "Scientific Research",
    "electric_power_energy": "Energy & Power",
    "mining": "Mining",
    "petrochemical": "Petrochemical",
    "law_judiciary": "Law & Judiciary",
    "accommodation_catering_hotel": "Hospitality",
    "film_entertainment": "Film & Entertainment",
    "agriculture_forestry_animal_husbandry_fishery": "Agriculture & Fishery",
    "current_affairs_government_administration": "Government & Public Affairs",
    "news_media": "News & Media",
    "artificial_intelligence_machine_learning": "AI & Machine Learning",
    "computer_programming_code": "Software Development",
    "sports": "Sports",
    "fire_safety_food_safety": "Food & Fire Safety",
    "mathematics_statistics": "Math & Statistics",
    "medicine_health_psychology_traditional_chinese_medicine": "Medicine & Health",
    "game": "Gaming",
    "other_information_services_information_security": "Information Security",
    "real_estate_construction": "Real Estate & Construction",
    "tourism_geography": "Tourism & Geography"
}
````

The topic distribution of the samples is as follows:

![Topic Distribution](static/topic_distribution.jpg)

We also extracted a subset of samples, obtained their text embeddings, and visualized the topic distribution using UMAP for dimensionality reduction:

![Topic Visualization](static/topic_visualization.jpg)

### Attribute Annotation

The distribution of the four additional attribute annotations is shown below:

![Attributes](static/attributes.jpg)





## 📂 Data Format

Each sample in the dataset is stored in JSON format and contains the following fields:

```json
{
    "id": "A unique identifier for each data entry",
    "text": "The original content of the article",
    "topic": "The topic of the article",
    "short_summary": "A one-sentence short summary",
    "medium_summary": "A medium-length summary",
    "long_summary": "A detailed long summary",
    "keywords": ["Keyword1", "Keyword2", "Keyword3", "..."],
    "statement_type": "The type of statement (e.g., factual vs. opinion)",
    "sentiment": "The sentiment of the article or the author's stance",
    "formality": "The formality of the article's writing style",
    "tense": "The tense of the article",
}
```





## 🛠️ Dataset Construction

The construction of CAMS was divided into three main stages:

1. **Data Source and Preprocessing**: We started with approximately 10 million articles from a large-scale, high-quality corpus, [IndustryCorpus2](https://huggingface.co/datasets/BAAI/IndustryCorpus2), as our initial candidate set. After rigorous quality filtering, heuristic-based filtering, and topic-balanced resampling, we curated a final set of 1 million high-quality, topically diverse articles.

2. **Multi-Level Summary Generation**: We proposed a **Stepwise Generation** pipeline. This process first generates a detailed long summary from the original article. Then, it uses both the original article and the long summary as context to generate the medium summary. Finally, it combines the article, long summary, and medium summary to produce the most concise short summary. This method ensures consistency and coherence across the different levels of summaries.

    <img src="static/pipeline.jpg" alt="Stepwise Generation Pipeline" style="zoom:50%;" />

3. **Multi-faceted Attribute Annotation**: For each article, we performed keyword extraction and annotated multiple linguistic and stylistic attributes. We employed a multi-round generation and voting mechanism to ensure the accuracy of these annotations.





## 🚀 Usage Example

You can easily load the CAMS dataset using the 🤗 `datasets` library.

```python
from datasets import load_dataset

# Load the CAMS dataset
dataset = load_dataset("Mxode/CAMS")

# Inspect the dataset structure
print(dataset)

# Access the first sample
sample = dataset["train"][0]
print("Article:", sample["text"][:200])
print("Short Summary:", sample["short_summary"])
print("Keywords:", sample["keywords"])
```





## 📜 Citation

If you use the CAMS dataset in your research, please cite our work:

```bibtex
@misc{zhang2025CAMS,
    title={CAMS: A Large-Scale Chinese Attribute-based Multi-faceted Summarization Dataset},
    url={https://huggingface.co/datasets/Mxode/CAMS},
    author={Xiantao Zhang},
    month={August},
    year={2025}
}
```





## 📄 License

This dataset is licensed under the **CC BY-SA 4.0** license.