PSewmuthu commited on
Commit
bf895a5
·
1 Parent(s): 7334b7d

Change the default Readme file

Browse files
Files changed (1) hide show
  1. README.md +120 -1
README.md CHANGED
@@ -1,3 +1,122 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: Optimized 478-Point 3D Facial Landmark Dataset
3
+ language: en
4
+ license:
5
+ - apache-2.0
6
+ tags:
7
+ - computer-vision
8
+ - affective-computing
9
+ - facial-landmarks
10
+ - mediapipe
11
+ - emotion-recognition
12
+ - feature-extraction
13
+ - video-analysis
14
+ - optimized
15
+ source_datasets:
16
+ - thnhthngchu/video-emotion
17
+ task_categories:
18
+ - image-classification
19
+ task_ids:
20
+ - multi-class-image-classification
21
+ - face-detection
22
+ citation:
23
+ - "@misc{VideoEmotionDataset,
24
+ title={Video Emotion},
25
+ author={thnhthngchu},
26
+ year={2020},
27
+ publisher={Kaggle},
28
+ url={https://www.kaggle.com/datasets/thnhthngchu/video-emotion}
29
+ }"
30
+ - "@misc{MediaPipe,
31
+ title={MediaPipe},
32
+ author={Google Inc.},
33
+ year={2020},
34
+ url={https://mediapipe.dev/}
35
+ }"
36
  ---
37
+
38
+ # Dataset Card for 478-Point Normalized 3D Facial Landmark Dataset
39
+
40
+ ## Dataset Description
41
+
42
+ This dataset provides **pre-extracted, normalized 3D facial landmark features** derived from the **Video Emotion** dataset. It is optimized for efficient training of **emotion recognition** and **facial analysis models**, bypassing the need to process large raw video files.
43
+
44
+ **License:** The extracted feature data in this Parquet file is licensed under **Apache 2.0**. Note that the original source video files may have separate licensing terms.
45
+
46
+ Each entry (row in the Parquet) represents a single video frame and contains the corresponding emotion label along with 1434 features representing the x, y, z coordinates for 478 distinct facial landmarks, as generated by the MediaPipe Face Landmarker model.
47
+
48
+ ---
49
+
50
+ ## Data Fields and Structure
51
+
52
+ The data is provided in a single Parquet file, typically named **`emotion_landmark_dataset.parquet`**.
53
+
54
+ | Column Name | Data Type | Description |
55
+ | :--------------- | :----------------- | :---------------------------------------------------------------------------------------------------------------- |
56
+ | `video_filename` | String | The identifier of the original video file from which the frame was extracted. |
57
+ | `frame_num` | Integer | The sequential frame index within the original video file. |
58
+ | `emotion` | String/Categorical | The ground truth emotion label for this **clip**. **Classes include: Angry, Disgust, Fear, Happy, Neutral, Sad.** |
59
+ | `x_0` to `x_477` | Float | The normalized X coordinate (horizontal position) for each of the 478 landmarks (0.0 to 1.0). |
60
+ | `y_0` to `y_477` | Float | The normalized Y coordinate (vertical position) for each of the 478 landmarks (0.0 to 1.0). |
61
+ | `z_0` to `z_477` | Float | The normalized Z coordinate (depth, relative to the face center) for each of the 478 landmarks. |
62
+
63
+ **Note on Coordinates:** Since the coordinates are **normalized** (0.0 to 1.0), they must be multiplied by the respective pixel width and height of the original frame to visualize them accurately.
64
+
65
+ ---
66
+
67
+ ## Data Collection and Processing
68
+
69
+ ### Source Video Details (Video Emotion Dataset)
70
+
71
+ - **Source:** [Video Emotion](https://www.kaggle.com/datasets/thnhthngchu/video-emotion) (Kaggle User: thnhthngchu)
72
+ - **Domain:** Facial expressions and affective computing, covering a range of scenarios.
73
+ - **Labels:** Videos were originally labeled with clip-level emotional categories.
74
+ - **License of Original Data:** Users must refer to the licensing terms specified by the original source dataset on Kaggle.
75
+
76
+ ### Feature Extraction Methodology
77
+
78
+ The features were extracted using the **MediaPipe Face Landmarker** model.
79
+
80
+ 1. **Frame Extraction:** Each video file was processed frame-by-frame.
81
+ 2. **Landmark Detection:** For each frame, the 478 facial landmarks were detected.
82
+ 3. **Normalization:** All coordinates (x, y, z) are normalized to the range [0.0, 1.0] relative to the bounding box of the face or the original frame dimensions.
83
+
84
+ ---
85
+
86
+ ## Usage Example and Visualization
87
+
88
+ To ensure the coordinates have been extracted correctly and to demonstrate the data visually, please refer to the provided **`optimized-3d-facial-landmark-dataset-usage.ipynb`** file in the repository.
89
+
90
+ This Jupyter Notebook contains a runnable Python example that **loads random video frames**, correctly denormalizes the coordinates using the frame's dimensions, and plots the 478 landmarks on the face.
91
+
92
+ ![Visualization](images/results.png)
93
+
94
+ ---
95
+
96
+ ## Potential Applications
97
+
98
+ - **Transfer Learning:** Use the landmarks as input features for lightweight classifiers (e.g., LSTMs, simple MLPs) for emotion recognition.
99
+ - **Biometrics:** Advanced facial tracking and identity verification research.
100
+ - **Data Augmentation:** Analyze feature distribution for generating synthetic training data.
101
+
102
+ ---
103
+
104
+ ## Citation
105
+
106
+ If you use this dataset in your research or project, please use the citation and acknowledge the original source data.
107
+
108
+ - **Original Data Source:** [Video Emotion](https://www.kaggle.com/datasets/thnhthngchu/video-emotion) (Kaggle User: thnhthngchu)
109
+ - **Extraction Framework:** Google Inc. (2020). MediaPipe. <https://mediapipe.dev/>
110
+
111
+ - **This Dataset:**
112
+
113
+ ```bibtex
114
+ @misc{pasindu_sewmuthu_abewickrama_singhe_2025,
115
+ author = { Pasindu Sewmuthu Abewickrama Singhe },
116
+ title = { Optimized_Video_Facial_Landmarks (Revision 7334b7d) },
117
+ year = 2025,
118
+ url = { https://huggingface.co/datasets/PSewmuthu/Optimized_Video_Facial_Landmarks },
119
+ doi = { 10.57967/hf/6765 },
120
+ publisher = { Hugging Face }
121
+ }
122
+ ```