Upload korpus_nusantara.py with huggingface_hub
Browse files- korpus_nusantara.py +17 -17
korpus_nusantara.py
CHANGED
|
@@ -5,13 +5,13 @@ import re
|
|
| 5 |
import datasets
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
|
| 12 |
_DATASETNAME = "korpus_nusantara"
|
| 13 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
| 14 |
-
_UNIFIED_VIEW_NAME =
|
| 15 |
|
| 16 |
_LANGUAGES = ["ind", "jav", "xdy", "bug", "sun", "mad", "bjn", "bbc", "khek", "msa", "min", "tiociu"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
| 17 |
_LOCAL = False
|
|
@@ -50,7 +50,7 @@ _URLS = {
|
|
| 50 |
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
| 51 |
|
| 52 |
_SOURCE_VERSION = "1.0.0"
|
| 53 |
-
|
| 54 |
|
| 55 |
|
| 56 |
"""
|
|
@@ -93,7 +93,7 @@ class KorpusNusantara(datasets.GeneratorBasedBuilder):
|
|
| 93 |
"""Bible En-Id is a machine translation dataset containing Indonesian-English parallel sentences collected from the bible.."""
|
| 94 |
|
| 95 |
BUILDER_CONFIGS = [
|
| 96 |
-
|
| 97 |
name=f"korpus_nusantara_ind_{subset}_source",
|
| 98 |
version=datasets.Version(_SOURCE_VERSION),
|
| 99 |
description=f"Korpus_Nusantara ind2{subset} source schema",
|
|
@@ -103,17 +103,17 @@ class KorpusNusantara(datasets.GeneratorBasedBuilder):
|
|
| 103 |
for subset in _LANGUAGES[1:]
|
| 104 |
] + \
|
| 105 |
[
|
| 106 |
-
|
| 107 |
-
name=f"korpus_nusantara_ind_{subset}
|
| 108 |
-
version=datasets.Version(
|
| 109 |
description=f"Korpus_Nusantara ind2{subset} Nusantara schema",
|
| 110 |
-
schema="
|
| 111 |
subset_id=f"korpus_nusantara",
|
| 112 |
)
|
| 113 |
for subset in _LANGUAGES[1:]
|
| 114 |
] + \
|
| 115 |
[
|
| 116 |
-
|
| 117 |
name=f"korpus_nusantara_{subset}_ind_source",
|
| 118 |
version=datasets.Version(_SOURCE_VERSION),
|
| 119 |
description=f"Korpus_Nusantara {subset}2ind source schema",
|
|
@@ -123,11 +123,11 @@ class KorpusNusantara(datasets.GeneratorBasedBuilder):
|
|
| 123 |
for subset in _LANGUAGES[1:]
|
| 124 |
] + \
|
| 125 |
[
|
| 126 |
-
|
| 127 |
-
name=f"korpus_nusantara_{subset}
|
| 128 |
-
version=datasets.Version(
|
| 129 |
description=f"Korpus_Nusantara {subset}2ind Nusantara schema",
|
| 130 |
-
schema="
|
| 131 |
subset_id=f"korpus_nusantara",
|
| 132 |
)
|
| 133 |
for subset in _LANGUAGES[1:]
|
|
@@ -138,7 +138,7 @@ class KorpusNusantara(datasets.GeneratorBasedBuilder):
|
|
| 138 |
def _info(self):
|
| 139 |
if self.config.schema == "source":
|
| 140 |
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")})
|
| 141 |
-
elif self.config.schema == "
|
| 142 |
features = schemas.text2text_features
|
| 143 |
|
| 144 |
return datasets.DatasetInfo(
|
|
@@ -203,7 +203,7 @@ class KorpusNusantara(datasets.GeneratorBasedBuilder):
|
|
| 203 |
}
|
| 204 |
yield idx, ex
|
| 205 |
|
| 206 |
-
elif self.config.schema == "
|
| 207 |
for idx, row in enumerate(df.itertuples()):
|
| 208 |
ex = {
|
| 209 |
"id": str(idx),
|
|
|
|
| 5 |
import datasets
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
+
from seacrowd.utils import schemas
|
| 9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 10 |
+
from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME
|
| 11 |
|
| 12 |
_DATASETNAME = "korpus_nusantara"
|
| 13 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
| 14 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
| 15 |
|
| 16 |
_LANGUAGES = ["ind", "jav", "xdy", "bug", "sun", "mad", "bjn", "bbc", "khek", "msa", "min", "tiociu"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
| 17 |
_LOCAL = False
|
|
|
|
| 50 |
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
| 51 |
|
| 52 |
_SOURCE_VERSION = "1.0.0"
|
| 53 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 54 |
|
| 55 |
|
| 56 |
"""
|
|
|
|
| 93 |
"""Bible En-Id is a machine translation dataset containing Indonesian-English parallel sentences collected from the bible.."""
|
| 94 |
|
| 95 |
BUILDER_CONFIGS = [
|
| 96 |
+
SEACrowdConfig(
|
| 97 |
name=f"korpus_nusantara_ind_{subset}_source",
|
| 98 |
version=datasets.Version(_SOURCE_VERSION),
|
| 99 |
description=f"Korpus_Nusantara ind2{subset} source schema",
|
|
|
|
| 103 |
for subset in _LANGUAGES[1:]
|
| 104 |
] + \
|
| 105 |
[
|
| 106 |
+
SEACrowdConfig(
|
| 107 |
+
name=f"korpus_nusantara_ind_{subset}_seacrowd_t2t",
|
| 108 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 109 |
description=f"Korpus_Nusantara ind2{subset} Nusantara schema",
|
| 110 |
+
schema="seacrowd_t2t",
|
| 111 |
subset_id=f"korpus_nusantara",
|
| 112 |
)
|
| 113 |
for subset in _LANGUAGES[1:]
|
| 114 |
] + \
|
| 115 |
[
|
| 116 |
+
SEACrowdConfig(
|
| 117 |
name=f"korpus_nusantara_{subset}_ind_source",
|
| 118 |
version=datasets.Version(_SOURCE_VERSION),
|
| 119 |
description=f"Korpus_Nusantara {subset}2ind source schema",
|
|
|
|
| 123 |
for subset in _LANGUAGES[1:]
|
| 124 |
] + \
|
| 125 |
[
|
| 126 |
+
SEACrowdConfig(
|
| 127 |
+
name=f"korpus_nusantara_{subset}_ind_seacrowd_t2t",
|
| 128 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 129 |
description=f"Korpus_Nusantara {subset}2ind Nusantara schema",
|
| 130 |
+
schema="seacrowd_t2t",
|
| 131 |
subset_id=f"korpus_nusantara",
|
| 132 |
)
|
| 133 |
for subset in _LANGUAGES[1:]
|
|
|
|
| 138 |
def _info(self):
|
| 139 |
if self.config.schema == "source":
|
| 140 |
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")})
|
| 141 |
+
elif self.config.schema == "seacrowd_t2t":
|
| 142 |
features = schemas.text2text_features
|
| 143 |
|
| 144 |
return datasets.DatasetInfo(
|
|
|
|
| 203 |
}
|
| 204 |
yield idx, ex
|
| 205 |
|
| 206 |
+
elif self.config.schema == "seacrowd_t2t":
|
| 207 |
for idx, row in enumerate(df.itertuples()):
|
| 208 |
ex = {
|
| 209 |
"id": str(idx),
|