import json import os import datasets _DESCRIPTION = "Tweet eval stance subset" _SUBSETS = ["stance_abortion", "stance_atheism", "stance_climate", "stance_feminist", "stance_hillary"] URL = "" #https://huggingface.co/datasets/SetFit/tweet_eval_stance/resolve/main/" _URLs = {split: {"train": URL + f"{split}/train.jsonl", "test": URL + f"{split}/test.jsonl"} for split in _SUBSETS} class TweetEval(datasets.GeneratorBasedBuilder): """TweetEval Dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=name, description=f"This part of my dataset covers {name} part of TweetEval Dataset.", ) for name in _SUBSETS ] def _info(self): names = ["none", "against", "favor"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.Value("int32"), "label_text": datasets.Value("string"), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"text_path": data_dir["train"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"text_path": data_dir["test"]}, ), ] def _generate_examples(self, text_path): """Yields examples.""" with open(text_path, encoding="utf-8") as f: texts = f.readlines() for i, text in enumerate(texts): yield i, json.loads(text)