Datasets:
derek-thomas
commited on
Commit
·
29afe55
1
Parent(s):
179a2d6
init commit
Browse files- .gitignore +4 -0
- ScienceQA.py +122 -0
- create_dataset.ipynb +0 -0
- download.sh +36 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ipynb_checkpoints
|
| 2 |
+
.idea
|
| 3 |
+
images/
|
| 4 |
+
text/
|
ScienceQA.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
_DESCRIPTION = """Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
| 7 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
| 8 |
+
with corresponding lectures and explanations.
|
| 9 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
| 10 |
+
respectively, for arriving at the correct answer."""
|
| 11 |
+
|
| 12 |
+
# Lets use the project page instead of the github repo
|
| 13 |
+
_HOMEPAGE = "https://scienceqa.github.io"
|
| 14 |
+
|
| 15 |
+
_CITATION = """\
|
| 16 |
+
@inproceedings{lu2022learn,
|
| 17 |
+
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},
|
| 18 |
+
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan},
|
| 19 |
+
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)},
|
| 20 |
+
year={2022}
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
_LICENSE = "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ScienceQA(datasets.GeneratorBasedBuilder):
|
| 28 |
+
"""Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
| 29 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
| 30 |
+
with corresponding lectures and explanations.
|
| 31 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
| 32 |
+
respectively, for arriving at the correct answer."""
|
| 33 |
+
|
| 34 |
+
VERSION = datasets.Version("1.0.0")
|
| 35 |
+
|
| 36 |
+
def _info(self):
|
| 37 |
+
return datasets.DatasetInfo(
|
| 38 |
+
description=_DESCRIPTION,
|
| 39 |
+
features=datasets.Features(
|
| 40 |
+
{
|
| 41 |
+
"image": datasets.Image(),
|
| 42 |
+
"question": datasets.Value("string"),
|
| 43 |
+
"choices": datasets.features.Sequence(datasets.Value("string")),
|
| 44 |
+
"answer": datasets.Value("int8"),
|
| 45 |
+
"hint": datasets.Value("string"),
|
| 46 |
+
"task": datasets.Value("string"),
|
| 47 |
+
"grade": datasets.Value("string"),
|
| 48 |
+
"subject": datasets.Value("string"),
|
| 49 |
+
"topic": datasets.Value("string"),
|
| 50 |
+
"category": datasets.Value("string"),
|
| 51 |
+
"skill": datasets.Value("string"),
|
| 52 |
+
"lecture": datasets.Value("string"),
|
| 53 |
+
"solution": datasets.Value("string")
|
| 54 |
+
}
|
| 55 |
+
),
|
| 56 |
+
homepage=_HOMEPAGE,
|
| 57 |
+
citation=_CITATION,
|
| 58 |
+
license=_LICENSE,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _split_generators(self, dl_manager):
|
| 62 |
+
text_path = Path.cwd() / 'text' / 'problems.json'
|
| 63 |
+
image_dir = Path.cwd() / 'images'
|
| 64 |
+
return [
|
| 65 |
+
datasets.SplitGenerator(
|
| 66 |
+
name=datasets.Split.TRAIN,
|
| 67 |
+
# These kwargs will be passed to _generate_examples
|
| 68 |
+
gen_kwargs={
|
| 69 |
+
"text_path": text_path,
|
| 70 |
+
"image_dir": image_dir,
|
| 71 |
+
"split": "train",
|
| 72 |
+
},
|
| 73 |
+
),
|
| 74 |
+
datasets.SplitGenerator(
|
| 75 |
+
name=datasets.Split.VALIDATION,
|
| 76 |
+
# These kwargs will be passed to _generate_examples
|
| 77 |
+
gen_kwargs={
|
| 78 |
+
"text_path": text_path,
|
| 79 |
+
"image_dir": image_dir,
|
| 80 |
+
"split": "val",
|
| 81 |
+
},
|
| 82 |
+
),
|
| 83 |
+
datasets.SplitGenerator(
|
| 84 |
+
name=datasets.Split.TEST,
|
| 85 |
+
# These kwargs will be passed to _generate_examples
|
| 86 |
+
gen_kwargs={
|
| 87 |
+
"text_path": text_path,
|
| 88 |
+
"image_dir": image_dir,
|
| 89 |
+
"split": "test"
|
| 90 |
+
},
|
| 91 |
+
),
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 95 |
+
def _generate_examples(self, text_path, image_dir, split):
|
| 96 |
+
with open(text_path, encoding="utf-8") as f:
|
| 97 |
+
# Load all the text. Note that if this was HUGE, we would need to find a better way to load the json
|
| 98 |
+
data = json.load(f)
|
| 99 |
+
ignore_keys = ['image', 'split']
|
| 100 |
+
|
| 101 |
+
# Get image_id from its annoying location
|
| 102 |
+
for image_id, row in data.items():
|
| 103 |
+
# Only look for the rows in our split
|
| 104 |
+
if row['split'] == split:
|
| 105 |
+
|
| 106 |
+
# Note, not all rows have images.
|
| 107 |
+
# Get all the image data we need
|
| 108 |
+
if row['image']:
|
| 109 |
+
image_path = image_dir / split / image_id / 'image.png'
|
| 110 |
+
image_bytes = image_path.read_bytes()
|
| 111 |
+
image_dict = {'path': str(image_path), 'bytes': image_bytes}
|
| 112 |
+
else:
|
| 113 |
+
image_dict = None
|
| 114 |
+
|
| 115 |
+
# Keep only the keys we need
|
| 116 |
+
relevant_row = {k: v for k, v in row.items() if k not in ignore_keys}
|
| 117 |
+
|
| 118 |
+
return_dict = {
|
| 119 |
+
'image': image_dict,
|
| 120 |
+
**relevant_row
|
| 121 |
+
}
|
| 122 |
+
yield image_id, return_dict
|
create_dataset.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
download.sh
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Modified from the original here: https://github.com/lupantech/ScienceQA/blob/main/tools/download.sh
|
| 3 |
+
|
| 4 |
+
cd images
|
| 5 |
+
|
| 6 |
+
if [ -d "train" ];
|
| 7 |
+
then
|
| 8 |
+
echo "Already downloaded train"
|
| 9 |
+
else
|
| 10 |
+
ls -alF
|
| 11 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/train.zip
|
| 12 |
+
unzip -q train.zip
|
| 13 |
+
rm train.zip
|
| 14 |
+
fi
|
| 15 |
+
|
| 16 |
+
if [ -d "val" ];
|
| 17 |
+
then
|
| 18 |
+
echo "Already downloaded val"
|
| 19 |
+
else
|
| 20 |
+
ls -alF
|
| 21 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/val.zip
|
| 22 |
+
unzip -q val.zip
|
| 23 |
+
rm val.zip
|
| 24 |
+
fi
|
| 25 |
+
|
| 26 |
+
if [ -d "test" ];
|
| 27 |
+
then
|
| 28 |
+
echo "Already downloaded test"
|
| 29 |
+
else
|
| 30 |
+
ls -alF
|
| 31 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/test.zip
|
| 32 |
+
unzip -q test.zip
|
| 33 |
+
rm test.zip
|
| 34 |
+
fi
|
| 35 |
+
|
| 36 |
+
echo "Completed downloads!"
|