---
task_categories:
- text-generation
language:
- en
size_categories:
- n<1K
tags:
- web-scraping
- html-extraction
- structured-data
- synthetic-data
- instruction-tuning
---
# CrawlerLM: HTML to JSON Extraction
A synthetic instruction-tuning dataset for training language models to extract structured JSON from HTML.
## Dataset Description
This dataset contains HTML paired with structured JSON extraction tasks in chat format. It's designed for fine-tuning small language models to perform structured data extraction from messy, real-world HTML across multiple domains.
### Key Features
- **447 examples** in instruction-tuning chat format
- **Real HTML** from diverse web sources (recipes, job postings, events)
- **Synthetic augmentation** with realistic HTML variations
- **Clean splits**: train (391) / validation (50) / test (6)
## Dataset Format
All examples are in instruction-tuning chat format with user/assistant messages.
**Fields**:
- `messages` (list): Conversational format with user/assistant roles
- User message: Instruction + HTML input
- Assistant message: JSON output
**Example**:
```python
{
"messages": [
{
"role": "user",
"content": "Extract structured data from the following HTML and return it as JSON.\n\nHTML:\n
...
"
},
{
"role": "assistant",
"content": "{\"type\": \"recipe\", \"title\": \"Best Ever Macaroni Cheese\", \"ingredients\": [\"500g macaroni\", ...], ...}"
}
]
}
```
**Splits**:
- Train: 391 examples
- Validation: 50 examples
- Test: 6 examples
## Schema Types
### Recipe (`type: "recipe"`)
**Fields**: `type`, `title`, `description`, `ingredients`, `instructions`, `prep_time`, `cook_time`, `total_time`, `servings`, `cuisine`, `difficulty`, `rating`, `author`, `image_url`, `video_url`, `source_url`, `published_date`
**Use case**: Extracting recipe data from food blogs, cooking sites
**Example sources**: BBC Good Food, AllRecipes, Serious Eats
### Job Posting (`type: "job_posting"`)
**Fields**: `type`, `title`, `company`, `location`, `compensation`, `benefits`, `mode_of_work`, `job_type`, `experience_level`, `requirements`, `responsibilities`, `description`, `application_url`, `company_logo`, `source_url`
**Use case**: Parsing job listings from career pages, job boards
**Example sources**: Greenhouse, Lever, LinkedIn Jobs
### Event (`type: "event"`)
**Fields**: `type`, `title`, `description`, `datetime`, `end_datetime`, `location`, `venue`, `organizer`, `price`, `registration_url`, `image_url`, `category`, `tags`, `source_url`
**Use case**: Extracting event details from event listings, calendars
**Example sources**: Eventbrite, Meetup, local event pages
## Data Collection Process
1. **Manual Annotation**: HTML fragments manually annotated using custom Chrome extension
2. **Quality Filtering**: Token limit filtering and validation
3. **Stratified Split**: Train/val/test split by schema type before augmentation
4. **Synthetic Augmentation**: Generate HTML variations while preserving JSON semantics
5. **Chat Conversion**: Convert to instruction-tuning format with system prompt
### Augmentation Strategies
- **Structural variations**: Wrapper divs, nesting depth changes
- **Attribute noise**: Random classes, IDs, data-* attributes
- **Template variations**: Semantically equivalent tags (div ↔ section)
- **HTML comments**: Developer comments injection
- **Whitespace variations**: Minified vs. prettified formatting
All augmentations preserve semantic content and ensure `expected_json` remains unchanged.
## Usage
### Load Dataset
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("espsluar/crawlerlm-html-to-json")
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
# Inspect example
example = train_data[0]
print(f"User prompt: {example['messages'][0]['content'][:100]}...")
print(f"Assistant response: {example['messages'][1]['content'][:100]}...")
```
### Filter by Schema Type
```python
from datasets import load_dataset
dataset = load_dataset("espsluar/crawlerlm-html-to-json")
# Filter for only recipes
recipes = dataset["train"].filter(
lambda x: '"type": "recipe"' in x["messages"][1]["content"]
)
print(f"Recipe examples: {len(recipes)}")
```
### Fine-tuning Example
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
# Load dataset
dataset = load_dataset("espsluar/crawlerlm-html-to-json")
# Load model and tokenizer
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Apply chat template and tokenize
def format_example(example):
text = tokenizer.apply_chat_template(
example["messages"],
tokenize=False
)
return tokenizer(text, truncation=True, max_length=4096)
tokenized_dataset = dataset.map(format_example, remove_columns=["messages"])
# Train
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="./crawlerlm-finetuned",
per_device_train_batch_size=1,
num_train_epochs=3,
),
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
)
trainer.train()
```
## Dataset Statistics
| Split | Examples | Schema Distribution |
|-------|----------|---------------------|
| Train | 391 | ~133 recipe, ~150 job_posting, ~117 event |
| Validation | 50 | ~17 recipe, ~17 job_posting, ~16 event |
| Test | 6 | 2 recipe, 2 job_posting, 2 event |
| **Total** | **447** | |
**Schema Distribution**:
- Recipe: ~152 examples (34%)
- Job Posting: ~169 examples (38%)
- Event: ~135 examples (30%)
## Intended Use
### Primary Use Cases
- Fine-tuning small language models (0.5B-7B parameters) for HTML extraction
- Training domain-specific web scrapers
- Benchmarking structured data extraction performance
- Teaching models to handle messy, real-world HTML
### Out of Scope
- Full webpage extraction (this dataset focuses on **fragments**, not entire pages)
- Single-field extraction (schemas have 10-17 fields each)
- Non-English content
- Dynamic/JavaScript-rendered content
## Limitations
- **Limited schema types**: Only 3 schema types (recipe, job_posting, event)
- **English only**: All examples are from English-language websites
- **Static HTML**: No JavaScript-rendered or dynamic content
- **Moderate dataset size**: 447 examples total (391 training examples)
- **Augmentation artifacts**: Synthetic variations may not perfectly match real-world HTML diversity
## Ethical Considerations
- **Web scraping**: This dataset is intended for educational and research purposes. Users should respect robots.txt and website terms of service when deploying trained models.
- **Data sources**: All HTML fragments are from publicly accessible websites
- **Privacy**: No personally identifiable information (PII) is intentionally included
## Citation
```bibtex
@misc{crawlerlm2025,
author = {Jack Luar},
title = {CrawlerLM: HTML Fragment to Structured JSON},
year = {2025},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/datasets/espsluar/crawlerlm-html-to-json}}
}
```
## License
MIT
## Dataset Creation
**Tooling**: Custom Chrome extension for manual annotation ([github.com/espsluar/c4ai-crawlerlm](https://github.com/espsluar/c4ai-crawlerlm))
**Pipeline**:
1. Manual HTML fragment selection and annotation
2. Schema-specific field extraction
3. Quality filtering (token limits, validation)
4. Stratified train/val/test split
5. Synthetic augmentation (structural, attribute, whitespace variations)
6. Chat format conversion with instruction templates
**Quality Control**:
- Manual review of all base annotations
- Token count validation (≤24K per example)
- Schema validation (required fields, types)
- Stratified sampling to ensure balanced schema distribution