--- task_categories: - text-generation language: - en size_categories: - n<1K tags: - web-scraping - html-extraction - structured-data - synthetic-data - instruction-tuning --- # CrawlerLM: HTML to JSON Extraction A synthetic instruction-tuning dataset for training language models to extract structured JSON from HTML. ## Dataset Description This dataset contains HTML paired with structured JSON extraction tasks in chat format. It's designed for fine-tuning small language models to perform structured data extraction from messy, real-world HTML across multiple domains. ### Key Features - **447 examples** in instruction-tuning chat format - **Real HTML** from diverse web sources (recipes, job postings, events) - **Synthetic augmentation** with realistic HTML variations - **Clean splits**: train (391) / validation (50) / test (6) ## Dataset Format All examples are in instruction-tuning chat format with user/assistant messages. **Fields**: - `messages` (list): Conversational format with user/assistant roles - User message: Instruction + HTML input - Assistant message: JSON output **Example**: ```python { "messages": [ { "role": "user", "content": "Extract structured data from the following HTML and return it as JSON.\n\nHTML:\n
...
" }, { "role": "assistant", "content": "{\"type\": \"recipe\", \"title\": \"Best Ever Macaroni Cheese\", \"ingredients\": [\"500g macaroni\", ...], ...}" } ] } ``` **Splits**: - Train: 391 examples - Validation: 50 examples - Test: 6 examples ## Schema Types ### Recipe (`type: "recipe"`) **Fields**: `type`, `title`, `description`, `ingredients`, `instructions`, `prep_time`, `cook_time`, `total_time`, `servings`, `cuisine`, `difficulty`, `rating`, `author`, `image_url`, `video_url`, `source_url`, `published_date` **Use case**: Extracting recipe data from food blogs, cooking sites **Example sources**: BBC Good Food, AllRecipes, Serious Eats ### Job Posting (`type: "job_posting"`) **Fields**: `type`, `title`, `company`, `location`, `compensation`, `benefits`, `mode_of_work`, `job_type`, `experience_level`, `requirements`, `responsibilities`, `description`, `application_url`, `company_logo`, `source_url` **Use case**: Parsing job listings from career pages, job boards **Example sources**: Greenhouse, Lever, LinkedIn Jobs ### Event (`type: "event"`) **Fields**: `type`, `title`, `description`, `datetime`, `end_datetime`, `location`, `venue`, `organizer`, `price`, `registration_url`, `image_url`, `category`, `tags`, `source_url` **Use case**: Extracting event details from event listings, calendars **Example sources**: Eventbrite, Meetup, local event pages ## Data Collection Process 1. **Manual Annotation**: HTML fragments manually annotated using custom Chrome extension 2. **Quality Filtering**: Token limit filtering and validation 3. **Stratified Split**: Train/val/test split by schema type before augmentation 4. **Synthetic Augmentation**: Generate HTML variations while preserving JSON semantics 5. **Chat Conversion**: Convert to instruction-tuning format with system prompt ### Augmentation Strategies - **Structural variations**: Wrapper divs, nesting depth changes - **Attribute noise**: Random classes, IDs, data-* attributes - **Template variations**: Semantically equivalent tags (div ↔ section) - **HTML comments**: Developer comments injection - **Whitespace variations**: Minified vs. prettified formatting All augmentations preserve semantic content and ensure `expected_json` remains unchanged. ## Usage ### Load Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("espsluar/crawlerlm-html-to-json") train_data = dataset["train"] val_data = dataset["validation"] test_data = dataset["test"] # Inspect example example = train_data[0] print(f"User prompt: {example['messages'][0]['content'][:100]}...") print(f"Assistant response: {example['messages'][1]['content'][:100]}...") ``` ### Filter by Schema Type ```python from datasets import load_dataset dataset = load_dataset("espsluar/crawlerlm-html-to-json") # Filter for only recipes recipes = dataset["train"].filter( lambda x: '"type": "recipe"' in x["messages"][1]["content"] ) print(f"Recipe examples: {len(recipes)}") ``` ### Fine-tuning Example ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments # Load dataset dataset = load_dataset("espsluar/crawlerlm-html-to-json") # Load model and tokenizer model_name = "Qwen/Qwen2.5-0.5B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Apply chat template and tokenize def format_example(example): text = tokenizer.apply_chat_template( example["messages"], tokenize=False ) return tokenizer(text, truncation=True, max_length=4096) tokenized_dataset = dataset.map(format_example, remove_columns=["messages"]) # Train trainer = Trainer( model=model, args=TrainingArguments( output_dir="./crawlerlm-finetuned", per_device_train_batch_size=1, num_train_epochs=3, ), train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["validation"], ) trainer.train() ``` ## Dataset Statistics | Split | Examples | Schema Distribution | |-------|----------|---------------------| | Train | 391 | ~133 recipe, ~150 job_posting, ~117 event | | Validation | 50 | ~17 recipe, ~17 job_posting, ~16 event | | Test | 6 | 2 recipe, 2 job_posting, 2 event | | **Total** | **447** | | **Schema Distribution**: - Recipe: ~152 examples (34%) - Job Posting: ~169 examples (38%) - Event: ~135 examples (30%) ## Intended Use ### Primary Use Cases - Fine-tuning small language models (0.5B-7B parameters) for HTML extraction - Training domain-specific web scrapers - Benchmarking structured data extraction performance - Teaching models to handle messy, real-world HTML ### Out of Scope - Full webpage extraction (this dataset focuses on **fragments**, not entire pages) - Single-field extraction (schemas have 10-17 fields each) - Non-English content - Dynamic/JavaScript-rendered content ## Limitations - **Limited schema types**: Only 3 schema types (recipe, job_posting, event) - **English only**: All examples are from English-language websites - **Static HTML**: No JavaScript-rendered or dynamic content - **Moderate dataset size**: 447 examples total (391 training examples) - **Augmentation artifacts**: Synthetic variations may not perfectly match real-world HTML diversity ## Ethical Considerations - **Web scraping**: This dataset is intended for educational and research purposes. Users should respect robots.txt and website terms of service when deploying trained models. - **Data sources**: All HTML fragments are from publicly accessible websites - **Privacy**: No personally identifiable information (PII) is intentionally included ## Citation ```bibtex @misc{crawlerlm2025, author = {Jack Luar}, title = {CrawlerLM: HTML Fragment to Structured JSON}, year = {2025}, publisher = {HuggingFace}, howpublished = {\url{https://huggingface.co/datasets/espsluar/crawlerlm-html-to-json}} } ``` ## License MIT ## Dataset Creation **Tooling**: Custom Chrome extension for manual annotation ([github.com/espsluar/c4ai-crawlerlm](https://github.com/espsluar/c4ai-crawlerlm)) **Pipeline**: 1. Manual HTML fragment selection and annotation 2. Schema-specific field extraction 3. Quality filtering (token limits, validation) 4. Stratified train/val/test split 5. Synthetic augmentation (structural, attribute, whitespace variations) 6. Chat format conversion with instruction templates **Quality Control**: - Manual review of all base annotations - Token count validation (≤24K per example) - Schema validation (required fields, types) - Stratified sampling to ensure balanced schema distribution