--- license: mit language: - en pretty_name: common-o dataset_info: features: - name: image_1 dtype: image - name: image_2 dtype: image - name: question dtype: string - name: answer dtype: string - name: objects_1 dtype: string - name: objects_2 dtype: string - name: num_objects_image_1 dtype: int64 - name: num_objects_image_2 dtype: int64 - name: question_template dtype: string - name: answer_type dtype: string - name: choices dtype: string - name: num_choices dtype: int64 - name: num_ground_truth_objects dtype: int64 - name: real_or_synthetic dtype: string - name: ground_truth_objects dtype: string splits: - name: main num_bytes: 5408696753 num_examples: 10426 - name: challenge num_bytes: 594218345 num_examples: 12600 download_size: 1102814055 dataset_size: 6002915098 configs: - config_name: default data_files: - split: main path: data/main-* - split: challenge path: data/challenge-* --- # Common-O > measuring multimodal reasoning across scenes Common-O, inspired by cognitive tests for humans, probes multimodal LLMs' ability to reason across scenes by asking "what’s in common?" ![fair conference content copy.001](https://cdn-uploads.huggingface.co/production/uploads/64c17345e82e55936cf971bc/5av7avUrsBjFuMrWuOiCW.jpeg) Common-O is comprised of household objects: ![fair conference content copy.003](https://cdn-uploads.huggingface.co/production/uploads/64c17345e82e55936cf971bc/hEvVz2uFR6z-jv1em25eY.jpeg) We have two subsets: Common-O (3 - 8 objects) and Common-O Complex (8 - 16 objects). ## Multimodal LLMs excel at single image perception, but struggle with multi-scene reasoning ![single_vs_multi_image(1)](https://cdn-uploads.huggingface.co/production/uploads/64c17345e82e55936cf971bc/1cB9iXHrSgyvfXgK6gmGu.png) ## Evaluating a Multimodal LLM on Common-O ```python import datasets # get a sample common_o = datasets.load_dataset("facebook/Common-O")["main"] # common_o_complex = datasets.load_dataset("facebook/Common-O")["complex"] x = common_o[3] output: str = model(x["image_1"], x["image_2"], x["question"]) check_answer(output, x["answer"]) ``` To check the answer, we use an exact match criteria: ```python import re def check_answer(generation: str, ground_truth: str) -> bool: """ Args: generation: model response, expected to contain "Answer: ..." ground_truth: comma-separated string of correct answers Returns: bool, whether the prediction matches the ground truth """ preds = generation.split("\n")[-1] preds = re.sub("Answer:", "", preds) preds = preds.split(",") preds = [p.strip() for p in preds] preds = sorted(preds, key=lambda x: x[0]) # split into a list ground_truth_list = [a.strip() for a in ground_truth.split(",")] ground_truth_list = sorted(ground_truth_list) return preds == ground_truth_list ``` Some models have specific formatting outputs for their answers, e.g. \boxed{A} or Answer: A. We recommend checking a few responses as you may notice slight variations based on this. This public set also has slight variations with the set used in the original paper, so while the measured capabilities are identical do not expect an exact replication of accuracy figures. If you'd like to use a single image model, here's a handy function to turn `image_1` and `image_2` into a single split image: ```python from PIL import Image def concat_images_horizontal( image1: Image.Image, image2: Image.Image, include_space: bool=True, space_width: int=20, fill_color: tuple=(0, 0, 0) ) -> Image.Image: # from https://note.nkmk.me/en/python-pillow-concat-images/ if not include_space: dst = Image.new("RGB", (image1.width + image2.width, image1.height)) dst.paste(image1, (0, 0)) dst.paste(image2, (image1.width, 0)) else: total_width = image1.width + space_width + image2.width max_height = max(image1.height, image2.height) dst = Image.new("RGB", (total_width, max_height), color=fill_color) dst.paste(image1, (0, (max_height - image1.height) // 2)) dst.paste(image2, (image1.width + space_width, (max_height - image2.height) // 2)) return dst ``` For more details about Common-O see the - [dataset card](https://huggingface.co/datasets/facebook/Common-O/blob/main/COMMON_O_DATASET_CARD.md) - [ArXiv Paper](https://arxiv.org/abs/2511.03768) Cite: ``` @inproceedings{Ross2025what0s, title = {What’s in Common? Multimodal Models Hallucinate When Reasoning Across Scenes}, author = {Candace Ross and Florian Bordes and Adina Williams and Polina Kirichenko and Mark Ibrahim}, year = {2025}, url = {https://openreview.net/attachment?id=d0F0N0cu4n&name=supplementary_material} } ```