--- license: mit task_categories: - object-detection tags: - disability-parking - accessibility - streetscape dataset_info: features: - name: image dtype: image - name: width dtype: int32 - name: height dtype: int32 - name: objects sequence: - name: bbox sequence: float32 length: 4 - name: category dtype: int64 - name: area dtype: float32 - name: iscrowd dtype: bool - name: id dtype: int64 - name: segmentation sequence: sequence: float32 splits: - name: train num_examples: 3688 - name: test num_examples: 717 - name: validation num_examples: 720 --- # AccessParkCV AccessParkCV is a deep learning pipeline that detects and characterizes the width of disability parking spaces from orthorectified aerial imagery. We publish a dataset of 7,069 labeled parking spaces (and 4,693 labeled access aisles), which we used to train the models making AccessParkCV possible. (This repo contains the data in a HuggingFace format. For raw COCO format, see [link](https://huggingface.co/datasets/makeabilitylab/AccessParkCV_coco)). ## Dataset Description This is an object detection dataset with 8 classes: - objects - access_aisle - curbside - dp_no_aisle - dp_one_aisle - dp_two_aisle - one_aisle - two_aisle ## Dataset Structure ### Data Fields - `image`: PIL Image object - `width`: Image width in pixels - `height`: Image height in pixels - `objects`: Dictionary containing: - `bbox`: List of bounding boxes in [x_min, y_min, x_max, y_max] format - `category`: List of category IDs - `area`: List of bounding box areas - `iscrowd`: List of crowd flags (boolean) - `id`: List of annotation IDs - `segmentation`: List of polygon segmentations (each as list of [x1,y1,x2,y2,...] coordinates) ### Category IDs to Category | Category ID | Class | |-----------------|-----------------| | 0 | objects | | 1 | access_aisle | | 2 | curbside | | 3 | dp\_no\_aisle | | 4 | dp\_one\_aisle | | 5 | dp\_two\_aisle | | 6 | one\_aisle | | 7 | two\_aisle | ### Data Sources | Region | Lat/Long Bounding Coordinates | Source Resolution | # images in dataset | |-----------------|---------------------------------------------|-------------------|---------------------| | Seattle | (47.9572, -122.4489), (47.4091, -122.1551) | 3 inch/pixel | 2,790 | | Washington D.C. | (38.9979, -77.1179), (38.7962, -76.9008) | 3 inch/pixel | 1,801 | | Spring Hill | (35.7943, -87.0034), (35.6489, -86.8447) | Unknown | 534 | | Total | | | 5,125 | ### Class Composition | Class | Quantity in dataset | |----------------|---------------------| | access\_aisle | 4,693 | | curbside | 36 | | dp\_no\_aisle | 300 | | dp\_one\_aisle | 2,790 | | dp\_two\_aisle | 402 | | one\_aisle | 3,424 | | two\_aisle | 117 | | Total | 11,762 | ### ### Data Splits | Split | Examples | |-------|----------| | train | 3688 | | test | 717 | | valid | 720 | ### Class splits ## Usage ```python from datasets import load_dataset train_dataset = load_dataset("makeabilitylab/disabilityparking", split="train", streaming=True) example = next(iter(train_dataset)) # Example of accessing an item image = example["image"] bboxes = example["objects"]["bbox"] categories = example["objects"]["category"] segmentations = example["objects"]["segmentation"] # Polygon coordinates ``` ## Citation ```bibtex @inproceedings{hwang_wherecanIpark, title={Where Can I Park? Understanding Human Perspectives and Scalably Detecting Disability Parking from Aerial Imagery}, author={Hwang, Jared and Li, Chu and Kang, Hanbyul and Hosseini, Maryam and Froehlich, Jon E.}, booktitle={The 27th International ACM SIGACCESS Conference on Computers and Accessibility}, series={ASSETS '25}, pages={20 pages}, year={2025}, month={October}, address={Denver, CO, USA}, publisher={ACM}, location={New York, NY, USA}, doi={10.1145/3663547.3746377}, url={https://doi.org/10.1145/3663547.3746377} } ```