Datasets:
Tasks:
Text-to-Image
Modalities:
Text
Formats:
parquet
Languages:
Vietnamese
Size:
100K - 1M
License:
File size: 2,107 Bytes
f628eb5 853299e f628eb5 8ab56c0 f628eb5 f39a521 f628eb5 5a6fbb7 8ab56c0 5a6fbb7 f39a521 5a6fbb7 f628eb5 48d35e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
task_categories:
- text-to-image
language:
- vi
tags:
- text-rendering
- ocr
- synthetic-data
- generative-models
- fine-tuning
size_categories:
- 100K<n<1M
pretty_name: Vietnamese Text Render 500K
configs:
- config_name: complex
data_files:
- split: train
path: data/complex/*
- config_name: simple
data_files:
- split: train
path: data/simple/*
---
# Vietnamese Text Render 500K Dataset
A large-scale dataset containing 500K Vietnamese text rendering image-text pairs for training generative models to improve text rendering performance.
## Dataset Structure
- **`image`**: Rendered text image in PNG format
- **`text`**: Corresponding text content
- **`filename`**: Original filename
## Usage
This dataset is designed for fine-tuning generative models to improve text rendering capabilities on Vietnamese language.
```python
from datasets import load_dataset
from PIL import Image
from io import BytesIO
dataset = load_dataset("pixxu/ViTextRender-500K") # Whole dataset include simple & complex images
print(dataset)
# Access a sample
sample = dataset['train'][0]
print(sample['text'])
img = Image.open(BytesIO(sample['image']))
img.show()
# If you run on Google Colab Notebook or Kaggle Notebook:
# img = Image.open(BytesIO(sample['image'])).convert("RGB")
# display(img)
```
If you want to load only simple or complex images:
```python
from datasets import load_dataset
from PIL import Image
from io import BytesIO
dataset = load_dataset("pixxu/ViTextRender-500K", name="simple", split="train") # For simple images
# For complex images, use: dataset = load_dataset("pixxu/ViTextRender-500K", name="complex", split="train")
print(dataset)
# Access a sample
sample = dataset[0]
print(sample['text'])
img = Image.open(BytesIO(sample['image']))
img.show()
# If you run on Google Colab Notebook or Kaggle Notebook
# img = Image.open(BytesIO(sample['image'])).convert("RGB")
# display(img)
```
## Applications
- Fine-tuning text-to-image models for better text rendering on Vietnamese language.
## License
Apache License 2.0 |