File size: 2,107 Bytes
f628eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853299e
 
 
 
 
 
 
 
 
f628eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ab56c0
f628eb5
 
 
 
 
 
 
 
f39a521
f628eb5
 
 
 
5a6fbb7
 
 
 
 
 
 
8ab56c0
5a6fbb7
 
 
 
 
 
 
 
 
f39a521
5a6fbb7
 
 
 
 
f628eb5
 
 
 
 
 
48d35e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
task_categories:
- text-to-image
language:
- vi
tags:
- text-rendering
- ocr
- synthetic-data
- generative-models
- fine-tuning
size_categories:
- 100K<n<1M
pretty_name: Vietnamese Text Render 500K
configs:
  - config_name: complex
    data_files:
      - split: train
        path: data/complex/*
  - config_name: simple
    data_files:
      - split: train
        path: data/simple/*
---

# Vietnamese Text Render 500K Dataset

A large-scale dataset containing 500K Vietnamese text rendering image-text pairs for training generative models to improve text rendering performance.

## Dataset Structure

- **`image`**: Rendered text image in PNG format
- **`text`**: Corresponding text content
- **`filename`**: Original filename

## Usage

This dataset is designed for fine-tuning generative models to improve text rendering capabilities on Vietnamese language.

```python
from datasets import load_dataset
from PIL import Image
from io import BytesIO

dataset = load_dataset("pixxu/ViTextRender-500K") # Whole dataset include simple & complex images
print(dataset)

# Access a sample
sample = dataset['train'][0]
print(sample['text'])
img = Image.open(BytesIO(sample['image']))
img.show()

# If you run on Google Colab Notebook or Kaggle Notebook:
# img = Image.open(BytesIO(sample['image'])).convert("RGB")
# display(img)
```

If you want to load only simple or complex images:

```python
from datasets import load_dataset
from PIL import Image
from io import BytesIO

dataset = load_dataset("pixxu/ViTextRender-500K", name="simple", split="train") # For simple images
# For complex images, use: dataset = load_dataset("pixxu/ViTextRender-500K", name="complex", split="train")
print(dataset)

# Access a sample
sample = dataset[0]
print(sample['text'])
img = Image.open(BytesIO(sample['image']))
img.show()

# If you run on Google Colab Notebook or Kaggle Notebook
# img = Image.open(BytesIO(sample['image'])).convert("RGB")
# display(img)
```


## Applications

- Fine-tuning text-to-image models for better text rendering on Vietnamese language.

## License

Apache License 2.0