Datasets:
shahmeer99
commited on
Commit
·
1d69a4c
1
Parent(s):
9769780
updated format for icde paper 2
Browse files- README.md +26 -24
- test.parquet +2 -2
- train.parquet +2 -2
- val.parquet +2 -2
README.md
CHANGED
|
@@ -35,23 +35,27 @@ dataset_info:
|
|
| 35 |
features:
|
| 36 |
- name: table_id
|
| 37 |
dtype: string
|
| 38 |
-
- name:
|
| 39 |
dtype: string
|
| 40 |
-
- name:
|
| 41 |
dtype: string
|
| 42 |
-
- name:
|
| 43 |
dtype: string
|
| 44 |
-
- name:
|
| 45 |
dtype: string
|
| 46 |
-
- name:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
dtype: string
|
| 48 |
- name: question_id
|
| 49 |
dtype: string
|
| 50 |
- name: question
|
| 51 |
dtype: string
|
| 52 |
-
- name:
|
| 53 |
dtype: string
|
| 54 |
-
- name:
|
| 55 |
dtype: string
|
| 56 |
- name: answer
|
| 57 |
dtype: string
|
|
@@ -59,8 +63,6 @@ dataset_info:
|
|
| 59 |
dtype: string
|
| 60 |
- name: prompt_without_system
|
| 61 |
dtype: string
|
| 62 |
-
- name: dataset_type
|
| 63 |
-
dtype: string
|
| 64 |
description: >
|
| 65 |
Human Centric Tables Question Answering (HCTQA) is a benchmark designed for evaluating
|
| 66 |
the performance of LLMs on question answering over complex, real-world and synthetic tables.
|
|
@@ -118,33 +120,33 @@ Each entry in the dataset is a dictionary with the following structure:
|
|
| 118 |
```json
|
| 119 |
{
|
| 120 |
"table_id": "arxiv--1--1118",
|
| 121 |
-
"
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
"table_image_url": "https://hcsdtables.qcri.org/datasets/all_images/arxiv_1_1118.jpg",
|
| 124 |
-
"
|
| 125 |
-
"table_properties": {
|
| 126 |
"Standard Relational Table": true,
|
| 127 |
"Row Nesting": false,
|
| 128 |
-
"Column Aggregation": false
|
| 129 |
-
...
|
| 130 |
-
},
|
| 131 |
-
"table_formats": {
|
| 132 |
-
"csv": ",0,1,2\n0,Domain,Average Text Length,Aspects Identified\n1,Journalism,50,44\n..."
|
| 133 |
}
|
| 134 |
},
|
| 135 |
"questions": [
|
| 136 |
{
|
| 137 |
"question_id": "arxiv--1--1118--M0",
|
| 138 |
"question": "Report the Domain and the Average Text Length where the Aspects Identified equals 72",
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
"Row Filter": true,
|
| 142 |
"Aggregation": false,
|
| 143 |
-
"Returned Columns": true
|
| 144 |
-
|
| 145 |
-
}
|
|
|
|
|
|
|
| 146 |
}
|
| 147 |
-
...
|
| 148 |
]
|
| 149 |
}
|
| 150 |
```
|
|
|
|
| 35 |
features:
|
| 36 |
- name: table_id
|
| 37 |
dtype: string
|
| 38 |
+
- name: dataset_type
|
| 39 |
dtype: string
|
| 40 |
+
- name: table_as_csv
|
| 41 |
dtype: string
|
| 42 |
+
- name: table_as_html
|
| 43 |
dtype: string
|
| 44 |
+
- name: table_as_markdown
|
| 45 |
dtype: string
|
| 46 |
+
- name: table_image_local_path_within_github_repo
|
| 47 |
+
dtype: string
|
| 48 |
+
- name: table_image_url
|
| 49 |
+
dtype: string
|
| 50 |
+
- name: table_properties_metadata
|
| 51 |
dtype: string
|
| 52 |
- name: question_id
|
| 53 |
dtype: string
|
| 54 |
- name: question
|
| 55 |
dtype: string
|
| 56 |
+
- name: question_template_for_synthetic_only
|
| 57 |
dtype: string
|
| 58 |
+
- name: question_properties_metadata
|
| 59 |
dtype: string
|
| 60 |
- name: answer
|
| 61 |
dtype: string
|
|
|
|
| 63 |
dtype: string
|
| 64 |
- name: prompt_without_system
|
| 65 |
dtype: string
|
|
|
|
|
|
|
| 66 |
description: >
|
| 67 |
Human Centric Tables Question Answering (HCTQA) is a benchmark designed for evaluating
|
| 68 |
the performance of LLMs on question answering over complex, real-world and synthetic tables.
|
|
|
|
| 120 |
```json
|
| 121 |
{
|
| 122 |
"table_id": "arxiv--1--1118",
|
| 123 |
+
"dataset_type": "arxiv",
|
| 124 |
+
"table_data": {
|
| 125 |
+
"table_as_csv": ",0,1,2\n0,Domain,Average Text Length,Aspects Identified\n1,Journalism,50,44\n...",
|
| 126 |
+
"table_as_html": "<table><tr><th>Domain</th><th>Average Text Length</th>...",
|
| 127 |
+
"table_as_markdown": "| Domain | Average Text Length | Aspects Identified |...",
|
| 128 |
+
"table_image_local_path_within_github_repo": "tables/images/arxiv--1--1118.jpg",
|
| 129 |
"table_image_url": "https://hcsdtables.qcri.org/datasets/all_images/arxiv_1_1118.jpg",
|
| 130 |
+
"table_properties_metadata": {
|
|
|
|
| 131 |
"Standard Relational Table": true,
|
| 132 |
"Row Nesting": false,
|
| 133 |
+
"Column Aggregation": false
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
}
|
| 135 |
},
|
| 136 |
"questions": [
|
| 137 |
{
|
| 138 |
"question_id": "arxiv--1--1118--M0",
|
| 139 |
"question": "Report the Domain and the Average Text Length where the Aspects Identified equals 72",
|
| 140 |
+
"question_template_for_synthetic_only": "Report [column_1] and [column_2] where [column_3] equals [value]",
|
| 141 |
+
"question_properties_metadata": {
|
| 142 |
"Row Filter": true,
|
| 143 |
"Aggregation": false,
|
| 144 |
+
"Returned Columns": true
|
| 145 |
+
},
|
| 146 |
+
"answer": "{Psychology | 86} || {Linguistics | 90}",
|
| 147 |
+
"prompt": "<system>...</system><user>...</user>",
|
| 148 |
+
"prompt_without_system": "<user>...</user>"
|
| 149 |
}
|
|
|
|
| 150 |
]
|
| 151 |
}
|
| 152 |
```
|
test.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:faf51ca1276fd3e9d317dd467106bf3a032067d6962879cf8b8462c8566bb1a5
|
| 3 |
+
size 16348170
|
train.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b44413abf46e7d6806a47150d02f4ae7e8d6eaec7b831e67809d70be047ee562
|
| 3 |
+
size 143274417
|
val.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85834b08a59832eb68cf89c933c0b5b38d44b63b38835899fe84c920946f0878
|
| 3 |
+
size 15650002
|