Datasets:

Modalities:
Tabular
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
zefang-liu commited on
Commit
175dbe0
·
verified ·
1 Parent(s): db6f97b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -7,7 +7,7 @@ size_categories:
7
  ---
8
  # Amazon Review Dataset
9
 
10
- This dataset contains Amazon reviews from January 1, 2018, to June 30, 2018. It includes 2,245 sequences with 127,054 events across 18 category types. The original data is available at [Amazon Review Data](https://nijianmo.github.io/amazon/) with citation information provided on the page. The detailed data preprocessing steps used to create this dataset can be found in the [TPP-LLM paper](https://arxiv.org/abs/2410.02062) and [TPP-LLM-Embedding paper](https://arxiv.org/abs/2410.14043).
11
 
12
  **Update (2025-10-28):** Added three timestamp fields (`timestamp_event`, `timestamp_since_start`, `timestamp_since_last_event`) in seconds. No other changes were made.
13
 
@@ -20,8 +20,8 @@ If you find this dataset useful, we kindly invite you to cite the following pape
20
  year={2024}
21
  }
22
 
23
- @article{liu2024efficient,
24
- title={Efficient Retrieval of Temporal Event Sequences from Textual Descriptions},
25
  author={Liu, Zefang and Quan, Yinzhu},
26
  journal={arXiv preprint arXiv:2410.14043},
27
  year={2024}
 
7
  ---
8
  # Amazon Review Dataset
9
 
10
+ This dataset contains Amazon reviews from January 1, 2018, to June 30, 2018. It includes 2,245 sequences with 127,054 events across 18 category types. The original data is available at [Amazon Review Data](https://nijianmo.github.io/amazon/) with citation information provided on the page. The detailed data preprocessing steps used to create this dataset can be found in the [TPP-LLM paper](https://arxiv.org/abs/2410.02062) and [TPP-Embedding paper](https://arxiv.org/abs/2410.14043).
11
 
12
  **Update (2025-10-28):** Added three timestamp fields (`timestamp_event`, `timestamp_since_start`, `timestamp_since_last_event`) in seconds. No other changes were made.
13
 
 
20
  year={2024}
21
  }
22
 
23
+ @article{liu2024retrieval,
24
+ title={Retrieval of Temporal Event Sequences from Textual Descriptions},
25
  author={Liu, Zefang and Quan, Yinzhu},
26
  journal={arXiv preprint arXiv:2410.14043},
27
  year={2024}