File size: 10,653 Bytes
742a3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import sys
import cv2
import json
import glob
import argparse
import subprocess
from typing import List, Tuple, Dict, Any
import numpy as np
from tqdm import tqdm
# ----------------- Args -----------------
def parse_args():
ap = argparse.ArgumentParser("OWLv2 detection on JPG folders (Top-K per image), multi-GPU.")
ap.add_argument("--input_dir", type=str, required=True, help="Root that contains subfolders of JPGs; if JPGs are directly under input_dir, it will be treated as a single set.")
ap.add_argument("--startswith", type=str, default="", help="Filter folder name prefix (or input_dir basename if no subfolders).")
ap.add_argument("--output_dir", type=str, required=True)
ap.add_argument("--frame_stride", type=int, default=1, help="Sample every N-th image within a folder.")
ap.add_argument("--top_k", type=int, default=5)
ap.add_argument("--max_frames", type=int, default=0, help="Max processed images per folder; 0 means no limit.")
ap.add_argument("--num_workers", type=int, default=1, help="#GPUs/#workers")
ap.add_argument("--worker_idx", type=int, default=-1, help="internal; >=0 means child worker")
ap.add_argument("--shard_file", type=str, default="", help="internal; JSON with folder paths for this worker")
ap.add_argument("--scenic_root", type=str, default="/home/ubuntu/rs/JiT/VisionModels/Scenic_OWLv2/big_vision")
return ap.parse_args()
# ----------------- Utils -----------------
def _has_jpgs(path: str) -> bool:
exts = ("*.jpg", "*.jpeg", "*.JPG", "*.JPEG")
for pat in exts:
if glob.glob(os.path.join(path, pat)):
return True
return False
def iter_image_dirs(input_dir: str, startswith: str) -> List[str]:
"""
Returns a list of directories to process.
- If input_dir contains subfolders: return subfolders that contain JPGs and match startswith.
- Else if input_dir itself contains JPGs and its basename matches startswith: return [input_dir].
"""
input_dir = os.path.abspath(input_dir)
subs = sorted([p for p in glob.glob(os.path.join(input_dir, "*")) if os.path.isdir(p)])
# Prefer subfolders if any exist and contain jpgs
dirs = [d for d in subs if os.path.basename(d).startswith(startswith) and _has_jpgs(d)]
if dirs:
return dirs
# Fallback: treat input_dir itself as one set if it has jpgs
base_ok = os.path.basename(os.path.normpath(input_dir)).startswith(startswith)
if base_ok and _has_jpgs(input_dir):
return [input_dir]
return []
def ensure_dir(p: str):
os.makedirs(p, exist_ok=True)
def draw_single_box(frame_bgr: np.ndarray, box: List[float], color=(0, 255, 0), thickness=2) -> np.ndarray:
x1, y1, x2, y2 = map(int, box)
out = frame_bgr.copy()
cv2.rectangle(out, (x1, y1), (x2, y2), color, thickness)
return out
def list_images_sorted(folder: str) -> List[str]:
pats = ["*.jpg", "*.jpeg", "*.JPG", "*.JPEG"]
files = []
for pat in pats:
files.extend(glob.glob(os.path.join(folder, pat)))
# Sort by natural file name order
return sorted(files)
# ----------------- Worker logic (imports JAX/Scenic inside) -----------------
def worker_run(args, dir_paths: List[str]):
import sys as _sys
if args.scenic_root not in _sys.path:
_sys.path.append(args.scenic_root)
# Free TF GPU to JAX in this process (why: avoid TF reserving VRAM)
import tensorflow as tf
tf.config.experimental.set_visible_devices([], "GPU")
from scenic.projects.owl_vit import configs
from scenic.projects.owl_vit import models
import jax
import functools
import owlv2_helper as helper # must be available in PYTHONPATH
class OWLv2Objectness:
def __init__(self, top_k: int = 5):
self.top_k = top_k
self.config = configs.owl_v2_clip_b16.get_config(init_mode="canonical_checkpoint")
self.module = models.TextZeroShotDetectionModule(
body_configs=self.config.model.body,
objectness_head_configs=self.config.model.objectness_head,
normalize=self.config.model.normalize,
box_bias=self.config.model.box_bias,
)
self.variables = self.module.load_variables(self.config.init_from.checkpoint_path)
self.image_embedder = jax.jit(
functools.partial(self.module.apply, self.variables, train=False, method=self.module.image_embedder)
)
self.objectness_predictor = jax.jit(
functools.partial(self.module.apply, self.variables, method=self.module.objectness_predictor)
)
self.box_predictor = jax.jit(
functools.partial(self.module.apply, self.variables, method=self.module.box_predictor)
)
def detect(self, image_bgr: np.ndarray) -> List[Tuple[List[float], float]]:
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
processed = helper.preprocess_images([image_rgb], self.config.dataset_configs.input_size)[0]
feature_map = self.image_embedder(processed[None, ...])
b, h, w, d = feature_map.shape
image_features = feature_map.reshape(b, h * w, d)
obj_logits = self.objectness_predictor(image_features)["objectness_logits"]
raw_boxes = self.box_predictor(image_features=image_features, feature_map=feature_map)["pred_boxes"]
obj = np.array(obj_logits[0], dtype=np.float32)
raw_boxes = np.array(raw_boxes[0], dtype=np.float32)
boxes = helper.rescale_detection_box(raw_boxes, image_rgb)
if len(obj) == 0:
return []
k = min(self.top_k, len(obj))
thresh = np.partition(obj, -k)[-k]
filtered: List[Tuple[List[float], float]] = []
H, W = image_rgb.shape[:2]
for box, score in zip(boxes, obj):
if score < thresh:
continue
if helper.too_small(box) or helper.too_large(box, image_rgb):
continue
x1, y1, x2, y2 = box
x1 = max(0, min(float(x1), W - 1))
y1 = max(0, min(float(y1), H - 1))
x2 = max(0, min(float(x2), W - 1))
y2 = max(0, min(float(y2), H - 1))
filtered.append(([x1, y1, x2, y2], float(score)))
kept_boxes = helper.remove_overlapping_bboxes([b for b, _ in filtered])
def _match_score(bb: List[float]) -> float:
arr = np.array([b for b, _ in filtered], dtype=np.float32)
idx = int(np.argmin(np.abs(arr - np.array(bb, dtype=np.float32)).sum(axis=1)))
return filtered[idx][1]
return [(bb, _match_score(bb)) for bb in kept_boxes]
detector = OWLv2Objectness(top_k=args.top_k)
for dpath in tqdm(dir_paths, desc=f"Worker{args.worker_idx}", unit="set"):
stem = os.path.basename(os.path.normpath(dpath))
images = list_images_sorted(dpath)
if not images:
print(f"[WARN][w{args.worker_idx}] No JPGs under: {dpath}")
continue
saved_cnt = 0
pbar = tqdm(total=len(images), desc=f"{stem}[w{args.worker_idx}]", unit="img", leave=False)
for idx, ipath in enumerate(images):
pbar.update(1)
if args.frame_stride > 1 and (idx % args.frame_stride) != 0:
continue
frame = cv2.imread(ipath, cv2.IMREAD_COLOR)
if frame is None:
print(f"[WARN][w{args.worker_idx}] Cannot read: {ipath}")
continue
boxes_scores = detector.detect(frame)
if boxes_scores:
boxes_scores = sorted(boxes_scores, key=lambda x: x[1], reverse=True)[:args.top_k]
fname = os.path.basename(ipath)
for i, (box, score) in enumerate(boxes_scores):
out_dir = os.path.join(args.output_dir, stem, f"object_{i}")
ensure_dir(out_dir)
vis = draw_single_box(frame, box, color=(0, 255, 0), thickness=2)
cv2.imwrite(os.path.join(out_dir, fname), vis)
saved_cnt += 1
if args.max_frames and saved_cnt >= args.max_frames:
break
pbar.close()
# ----------------- Master -----------------
def main():
args = parse_args()
# Child worker path
if args.worker_idx >= 0:
if not args.shard_file or not os.path.exists(args.shard_file):
raise RuntimeError("Worker requires --shard_file with JSON list of folder paths.")
with open(args.shard_file, "r", encoding="utf-8") as f:
dir_paths = json.load(f)
worker_run(args, dir_paths)
return
# Master path
dir_paths = iter_image_dirs(args.input_dir, args.startswith)
if not dir_paths:
print(f"[INFO] No JPG folders (or JPGs) startwith '{args.startswith}' under {args.input_dir}")
return
num_workers = max(1, int(args.num_workers))
shards: List[List[str]] = [[] for _ in range(num_workers)]
for i, d in enumerate(dir_paths):
shards[i % num_workers].append(d)
procs = []
tmp_dir = os.path.join(args.output_dir, "_shards_tmp")
ensure_dir(tmp_dir)
for w in range(num_workers):
shard_path = os.path.join(tmp_dir, f"shard_{w}.json")
with open(shard_path, "w", encoding="utf-8") as f:
json.dump(shards[w], f, ensure_ascii=False, indent=0)
# Bind GPU: cycle through available GPU ids [0..num_workers-1]
env = os.environ.copy()
env["CUDA_VISIBLE_DEVICES"] = str(w) # one GPU per worker
cmd = [
sys.executable, __file__,
"--input_dir", args.input_dir,
"--startswith", args.startswith,
"--output_dir", args.output_dir,
"--frame_stride", str(args.frame_stride),
"--top_k", str(args.top_k),
"--max_frames", str(args.max_frames),
"--num_workers", str(num_workers),
"--worker_idx", str(w),
"--shard_file", shard_path,
"--scenic_root", args.scenic_root,
]
print(f"[Master] Launch worker {w}: GPU={env['CUDA_VISIBLE_DEVICES']} folders={len(shards[w])}")
procs.append(subprocess.Popen(cmd, env=env))
# wait
rc = 0
for p in procs:
p.wait()
rc |= p.returncode
if rc != 0:
print("[Master] Some workers failed. Return code:", rc)
else:
print("[Master] All workers done. Output:", args.output_dir)
if __name__ == "__main__":
main() |