Upload 2 files
Browse files- custom_generate/generate.py +306 -0
- custom_generate/requirements.txt +4 -0
custom_generate/generate.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
from typing import Any, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
| 8 |
+
from transformers.generation.logits_process import (
|
| 9 |
+
TemperatureLogitsWarper,
|
| 10 |
+
TopKLogitsWarper,
|
| 11 |
+
TopPLogitsWarper,
|
| 12 |
+
)
|
| 13 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def generate(
|
| 17 |
+
model: Any,
|
| 18 |
+
input_ids: torch.LongTensor,
|
| 19 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 20 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 21 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 22 |
+
synced_gpus: bool = False,
|
| 23 |
+
streamer: Optional[Any] = None,
|
| 24 |
+
**model_kwargs,
|
| 25 |
+
) -> Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, torch.LongTensor]:
|
| 26 |
+
"""Custom decoding with DeepCONF (confidence-based early stopping).
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
model: PreTrainedModel with a LM head.
|
| 30 |
+
input_ids: Prompt ids of shape (batch, seq_len).
|
| 31 |
+
logits_processor: Optional logits processors.
|
| 32 |
+
stopping_criteria: Optional stopping criteria.
|
| 33 |
+
generation_config: GenerationConfig controlling sampling/outputs.
|
| 34 |
+
synced_gpus: Keep looping to max length for distributed setups.
|
| 35 |
+
streamer: Optional streamer for incremental tokens.
|
| 36 |
+
**model_kwargs: Forward pass kwargs (e.g., attention_mask).
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, or LongTensor
|
| 40 |
+
depending on `return_dict_in_generate` and model type.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
# Get DeepCONF parameters from generation_config or set defaults
|
| 44 |
+
enable_conf = getattr(generation_config, "enable_conf", False)
|
| 45 |
+
window_size = getattr(generation_config, "window_size", 2048)
|
| 46 |
+
threshold = getattr(generation_config, "threshold", 17.0) # Default threshold for confidence (positive value)
|
| 47 |
+
|
| 48 |
+
# If DeepCONF is not enabled, fall back to standard sampling
|
| 49 |
+
if not enable_conf:
|
| 50 |
+
return model._sample(
|
| 51 |
+
input_ids,
|
| 52 |
+
logits_processor=logits_processor,
|
| 53 |
+
stopping_criteria=stopping_criteria,
|
| 54 |
+
generation_config=generation_config,
|
| 55 |
+
synced_gpus=synced_gpus,
|
| 56 |
+
streamer=streamer,
|
| 57 |
+
**model_kwargs,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Initialize values
|
| 61 |
+
# Handle pad token properly (following HF best practices)
|
| 62 |
+
pad_token_id = generation_config.pad_token_id
|
| 63 |
+
if pad_token_id is None and hasattr(generation_config, "_pad_token_tensor"):
|
| 64 |
+
pad_token_id = generation_config._pad_token_tensor
|
| 65 |
+
if pad_token_id is None and hasattr(model.config, "pad_token_id"):
|
| 66 |
+
pad_token_id = model.config.pad_token_id
|
| 67 |
+
if pad_token_id is None and generation_config.eos_token_id is not None:
|
| 68 |
+
# Use eos token as pad token if not set
|
| 69 |
+
pad_token_id = generation_config.eos_token_id
|
| 70 |
+
|
| 71 |
+
output_attentions = generation_config.output_attentions
|
| 72 |
+
output_hidden_states = generation_config.output_hidden_states
|
| 73 |
+
output_scores = generation_config.output_scores
|
| 74 |
+
output_logits = generation_config.output_logits
|
| 75 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
| 76 |
+
output_confidences = getattr(generation_config, "output_confidences", False)
|
| 77 |
+
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
|
| 78 |
+
do_sample = generation_config.do_sample
|
| 79 |
+
|
| 80 |
+
# Initialize attention / hidden states / scores tuples
|
| 81 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
| 82 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
| 83 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 84 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 85 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
| 86 |
+
|
| 87 |
+
# If model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 88 |
+
if return_dict_in_generate and model.config.is_encoder_decoder:
|
| 89 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
| 90 |
+
encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
| 91 |
+
|
| 92 |
+
# Keep track of which sequences are already finished
|
| 93 |
+
batch_size, cur_len = input_ids.shape[:2]
|
| 94 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
| 95 |
+
# Use public kv-cache via past_key_values
|
| 96 |
+
|
| 97 |
+
# Initialize confidence tracking
|
| 98 |
+
# Use deque for sliding window with fixed size
|
| 99 |
+
conf_group_lists = [deque(maxlen=window_size) for _ in range(batch_size)]
|
| 100 |
+
conf_grouped_sums = [0.0 for _ in range(batch_size)] # Running sums for efficient mean calculation
|
| 101 |
+
|
| 102 |
+
# Initialize via prepare_inputs_for_generation
|
| 103 |
+
|
| 104 |
+
# Optional per-step confidences for debugging/visualization
|
| 105 |
+
step_confidences = [] if (return_dict_in_generate and output_confidences) else None
|
| 106 |
+
|
| 107 |
+
# Main generation loop using public controls
|
| 108 |
+
steps = 0
|
| 109 |
+
max_new_tokens = getattr(generation_config, "max_new_tokens", None) or 512
|
| 110 |
+
# Initialize cache_position for first forward over the full prompt
|
| 111 |
+
# Subsequent steps will pass a single position incrementally
|
| 112 |
+
model_kwargs["cache_position"] = torch.arange(cur_len, device=input_ids.device)
|
| 113 |
+
while steps < max_new_tokens and unfinished_sequences.max() != 0:
|
| 114 |
+
# Prepare model inputs (proper KV cache handling)
|
| 115 |
+
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 116 |
+
|
| 117 |
+
# Prepare variable output controls
|
| 118 |
+
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
|
| 119 |
+
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
|
| 120 |
+
|
| 121 |
+
# Forward pass with proper KV cache handling
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
outputs = model(**model_inputs, return_dict=True)
|
| 124 |
+
next_token_logits = outputs.logits[:, -1, :].detach()
|
| 125 |
+
|
| 126 |
+
# Update model kwargs for next iteration (public): carry past_key_values
|
| 127 |
+
if hasattr(outputs, "past_key_values") and outputs.past_key_values is not None:
|
| 128 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
| 129 |
+
|
| 130 |
+
# Pre-process distribution with logits processors
|
| 131 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 132 |
+
|
| 133 |
+
# Apply logits warpers (e.g., temperature, top-k, top-p) from generation_config
|
| 134 |
+
warpers = LogitsProcessorList()
|
| 135 |
+
# Temperature
|
| 136 |
+
temperature = getattr(generation_config, "temperature", 1.0)
|
| 137 |
+
if temperature is not None and temperature != 1.0:
|
| 138 |
+
warpers.append(TemperatureLogitsWarper(temperature))
|
| 139 |
+
# Top-k
|
| 140 |
+
top_k = getattr(generation_config, "top_k", None)
|
| 141 |
+
if top_k is not None and isinstance(top_k, int) and top_k > 0:
|
| 142 |
+
warpers.append(TopKLogitsWarper(top_k))
|
| 143 |
+
# Top-p
|
| 144 |
+
top_p = getattr(generation_config, "top_p", None)
|
| 145 |
+
if top_p is not None and top_p < 1.0:
|
| 146 |
+
warpers.append(TopPLogitsWarper(top_p))
|
| 147 |
+
if len(warpers) > 0:
|
| 148 |
+
next_token_scores = warpers(input_ids, next_token_scores)
|
| 149 |
+
|
| 150 |
+
# Store scores, attentions and hidden_states when required
|
| 151 |
+
if return_dict_in_generate:
|
| 152 |
+
if output_scores:
|
| 153 |
+
scores += (next_token_scores,)
|
| 154 |
+
if output_logits:
|
| 155 |
+
raw_logits += (next_token_logits,)
|
| 156 |
+
if output_attentions:
|
| 157 |
+
decoder_attentions += (
|
| 158 |
+
(outputs.decoder_attentions,) if model.config.is_encoder_decoder else (outputs.attentions,)
|
| 159 |
+
)
|
| 160 |
+
if model.config.is_encoder_decoder:
|
| 161 |
+
cross_attentions += (outputs.cross_attentions,)
|
| 162 |
+
|
| 163 |
+
if output_hidden_states:
|
| 164 |
+
decoder_hidden_states += (
|
| 165 |
+
(outputs.decoder_hidden_states,) if model.config.is_encoder_decoder else (outputs.hidden_states,)
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Token selection
|
| 169 |
+
if do_sample:
|
| 170 |
+
probs = F.softmax(next_token_scores, dim=-1)
|
| 171 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 172 |
+
else:
|
| 173 |
+
next_tokens = torch.argmax(next_token_scores, dim=-1)
|
| 174 |
+
|
| 175 |
+
# Calculate confidence using only top-k/top-p filtered candidates (post-logits processors),
|
| 176 |
+
# excluding the sampled token.
|
| 177 |
+
# We consider candidates where logits are finite after warpers (e.g., top-k/top-p/temperature).
|
| 178 |
+
logprobs = F.log_softmax(next_token_scores, dim=-1)
|
| 179 |
+
candidate_mask = torch.isfinite(next_token_scores)
|
| 180 |
+
|
| 181 |
+
deepconf_stopping = torch.ones(batch_size, dtype=torch.bool, device=input_ids.device)
|
| 182 |
+
step_conf_values = [0.0] * batch_size # collect per-sequence confidences for this step (full batch)
|
| 183 |
+
|
| 184 |
+
for i in range(batch_size):
|
| 185 |
+
if not unfinished_sequences[i]:
|
| 186 |
+
continue
|
| 187 |
+
|
| 188 |
+
# Count valid candidates
|
| 189 |
+
num_candidates = int(candidate_mask[i].sum().item())
|
| 190 |
+
if num_candidates <= 1:
|
| 191 |
+
conf = 0.0
|
| 192 |
+
else:
|
| 193 |
+
# Sum logprobs over valid candidates and exclude the sampled token's logprob
|
| 194 |
+
total_lp = torch.sum(logprobs[i][candidate_mask[i]])
|
| 195 |
+
selected_lp = (
|
| 196 |
+
logprobs[i, next_tokens[i]]
|
| 197 |
+
if candidate_mask[i, next_tokens[i]]
|
| 198 |
+
else torch.tensor(0.0, device=logprobs.device)
|
| 199 |
+
)
|
| 200 |
+
denom = num_candidates - 1
|
| 201 |
+
# Negative mean of non-selected candidate logprobs
|
| 202 |
+
conf = -((total_lp - selected_lp) / denom).item()
|
| 203 |
+
|
| 204 |
+
# Update tracking structures
|
| 205 |
+
if len(conf_group_lists[i]) >= window_size:
|
| 206 |
+
conf_grouped_sums[i] -= conf_group_lists[i][0]
|
| 207 |
+
conf_group_lists[i].append(conf)
|
| 208 |
+
conf_grouped_sums[i] += conf
|
| 209 |
+
|
| 210 |
+
# Apply confidence-based early stopping when window is full
|
| 211 |
+
if len(conf_group_lists[i]) >= window_size:
|
| 212 |
+
avg_conf = conf_grouped_sums[i] / len(conf_group_lists[i])
|
| 213 |
+
if avg_conf < threshold:
|
| 214 |
+
deepconf_stopping[i] = False
|
| 215 |
+
|
| 216 |
+
if step_confidences is not None:
|
| 217 |
+
step_conf_values[i] = conf
|
| 218 |
+
|
| 219 |
+
if step_confidences is not None:
|
| 220 |
+
# Store this step's confidences as a tensor of shape (batch,)
|
| 221 |
+
step_confidences.append(torch.tensor(step_conf_values, device=input_ids.device))
|
| 222 |
+
|
| 223 |
+
# Finished sentences should have their next token be a padding token
|
| 224 |
+
if has_eos_stopping_criteria and pad_token_id is not None:
|
| 225 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
| 226 |
+
|
| 227 |
+
# Update generated ids, model inputs, and length for next step
|
| 228 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 229 |
+
# Update attention mask if available
|
| 230 |
+
if model_kwargs.get("attention_mask") is not None:
|
| 231 |
+
attn = model_kwargs["attention_mask"]
|
| 232 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 233 |
+
[attn, torch.ones((batch_size, 1), dtype=attn.dtype, device=attn.device)], dim=-1
|
| 234 |
+
)
|
| 235 |
+
# Update cache_position for next step (single next token)
|
| 236 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
| 237 |
+
if streamer is not None:
|
| 238 |
+
streamer.put(next_tokens.cpu())
|
| 239 |
+
|
| 240 |
+
# Update unfinished sequences with standard stopping criteria (per-sequence if available)
|
| 241 |
+
sc = stopping_criteria(input_ids, scores)
|
| 242 |
+
if isinstance(sc, torch.Tensor):
|
| 243 |
+
unfinished_sequences = unfinished_sequences & ~sc
|
| 244 |
+
elif sc:
|
| 245 |
+
# global stop
|
| 246 |
+
unfinished_sequences = torch.zeros_like(unfinished_sequences)
|
| 247 |
+
|
| 248 |
+
# Apply DeepCONF stopping
|
| 249 |
+
unfinished_sequences = unfinished_sequences & deepconf_stopping
|
| 250 |
+
|
| 251 |
+
# Early break if all sequences finished and not synchronized
|
| 252 |
+
if unfinished_sequences.max() == 0 and not synced_gpus:
|
| 253 |
+
break
|
| 254 |
+
cur_len += 1
|
| 255 |
+
steps += 1
|
| 256 |
+
|
| 257 |
+
# Clean up outputs to save memory
|
| 258 |
+
del outputs
|
| 259 |
+
|
| 260 |
+
if streamer is not None:
|
| 261 |
+
streamer.end()
|
| 262 |
+
|
| 263 |
+
# Return results
|
| 264 |
+
if return_dict_in_generate:
|
| 265 |
+
# Prepare confidences tensor if requested
|
| 266 |
+
confidences_tensor = None
|
| 267 |
+
if step_confidences is not None and len(step_confidences) > 0:
|
| 268 |
+
# Shape: (steps, batch) -> (batch, steps)
|
| 269 |
+
confidences_tensor = torch.stack(step_confidences, dim=0).transpose(0, 1)
|
| 270 |
+
if model.config.is_encoder_decoder:
|
| 271 |
+
output = GenerateEncoderDecoderOutput(
|
| 272 |
+
sequences=input_ids,
|
| 273 |
+
scores=scores,
|
| 274 |
+
logits=raw_logits,
|
| 275 |
+
encoder_attentions=encoder_attentions,
|
| 276 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 277 |
+
decoder_attentions=decoder_attentions,
|
| 278 |
+
cross_attentions=cross_attentions,
|
| 279 |
+
decoder_hidden_states=decoder_hidden_states,
|
| 280 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 281 |
+
)
|
| 282 |
+
if confidences_tensor is not None:
|
| 283 |
+
output["confidences"] = confidences_tensor
|
| 284 |
+
try:
|
| 285 |
+
setattr(output, "confidences", confidences_tensor)
|
| 286 |
+
except Exception:
|
| 287 |
+
pass
|
| 288 |
+
return output
|
| 289 |
+
else:
|
| 290 |
+
output = GenerateDecoderOnlyOutput(
|
| 291 |
+
sequences=input_ids,
|
| 292 |
+
scores=scores,
|
| 293 |
+
logits=raw_logits,
|
| 294 |
+
attentions=decoder_attentions,
|
| 295 |
+
hidden_states=decoder_hidden_states,
|
| 296 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 297 |
+
)
|
| 298 |
+
if confidences_tensor is not None:
|
| 299 |
+
output["confidences"] = confidences_tensor
|
| 300 |
+
try:
|
| 301 |
+
setattr(output, "confidences", confidences_tensor)
|
| 302 |
+
except Exception:
|
| 303 |
+
pass
|
| 304 |
+
return output
|
| 305 |
+
else:
|
| 306 |
+
return input_ids
|
custom_generate/requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DeepCONF custom generation strategy requirements
|
| 2 |
+
# This implementation only uses PyTorch and Transformers, which should already be available
|
| 3 |
+
torch>=1.13.0
|
| 4 |
+
transformers>=4.35.0
|