|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
|
from typing import Optional, Tuple |
|
|
|
|
|
import librosa |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from einops import rearrange |
|
|
from torch import nn |
|
|
|
|
|
DEFAULT_SAMPLE_RATE = 16000 |
|
|
MIN_DISCRETE_AUDIO_CHUNK_SAMPLES = 1600 |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ModelConfig: |
|
|
n_mels: int = 128 |
|
|
n_audio_ctx: int = 1500 |
|
|
n_audio_state: int = 1280 |
|
|
n_audio_head: int = 20 |
|
|
n_audio_layer: int = 6 |
|
|
n_codebook_size: int = 3**8 |
|
|
|
|
|
use_sdpa: bool = True |
|
|
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, scaling=None): |
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
|
t = torch.arange(end, device=freqs.device) |
|
|
if scaling is not None: |
|
|
t = t * scaling |
|
|
freqs = torch.outer(t, freqs).float() |
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
|
|
|
|
return torch.cat((freqs_cis, freqs_cis), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_emb( |
|
|
xq: torch.Tensor, |
|
|
xk: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
real = torch.view_as_real(freqs_cis) |
|
|
cos, sin = real[:, :, 0], real[:, :, 1] |
|
|
cos = cos.unsqueeze(0).unsqueeze(2) |
|
|
sin = sin.unsqueeze(0).unsqueeze(2) |
|
|
|
|
|
D = xq.shape[-1] |
|
|
half_l, half_r = xq[:, :, :, : D // 2], xq[:, :, :, D // 2 :] |
|
|
xq_r = torch.cat((-half_r, half_l), dim=-1) |
|
|
|
|
|
D = xk.shape[-1] |
|
|
|
|
|
half_l, half_r = xk[:, :, :, : D // 2], xk[:, :, :, D // 2 :] |
|
|
xk_r = torch.cat((-half_r, half_l), dim=-1) |
|
|
|
|
|
return xq * cos + xq_r * sin, xk * cos + xk_r * sin |
|
|
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
|
|
|
class Linear(nn.Linear): |
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return F.linear( |
|
|
x, |
|
|
self.weight.to(x.dtype), |
|
|
None if self.bias is None else self.bias.to(x.dtype), |
|
|
) |
|
|
|
|
|
|
|
|
class Conv1d(nn.Conv1d): |
|
|
def _conv_forward(self, x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]) -> torch.Tensor: |
|
|
return super()._conv_forward(x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)) |
|
|
|
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
|
def __init__(self, n_state: int, n_head: int, use_sdpa: bool = True): |
|
|
super().__init__() |
|
|
self.n_head = n_head |
|
|
self.query = Linear(n_state, n_state) |
|
|
self.key = Linear(n_state, n_state, bias=False) |
|
|
self.value = Linear(n_state, n_state) |
|
|
self.out = Linear(n_state, n_state) |
|
|
|
|
|
self.use_sdpa = use_sdpa |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
mask: Optional[torch.Tensor] = None, |
|
|
): |
|
|
q = self.query(x) |
|
|
k = self.key(x) |
|
|
v = self.value(x) |
|
|
|
|
|
wv, qk = self.qkv_attention(q, k, v, mask) |
|
|
return self.out(wv), qk |
|
|
|
|
|
def qkv_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None): |
|
|
_, _, D = q.shape |
|
|
scale = (D // self.n_head) ** -0.25 |
|
|
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale |
|
|
k = k.view(*k.shape[:2], self.n_head, -1) |
|
|
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) |
|
|
|
|
|
if not self.use_sdpa: |
|
|
k = k.permute(0, 2, 3, 1) * scale |
|
|
qk = q @ k |
|
|
if mask is not None: |
|
|
qk = qk + mask |
|
|
qk = qk.float() |
|
|
w = torch.nn.functional.softmax(qk, dim=-1).to(q.dtype) |
|
|
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() |
|
|
else: |
|
|
k = k.permute(0, 2, 1, 3) * scale |
|
|
assert mask is not None |
|
|
output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, scale=1.0) |
|
|
output = output.transpose(1, 2).contiguous().view(q.size(0), -1, D) |
|
|
return output, None |
|
|
|
|
|
|
|
|
class FSQCodebook(torch.nn.Module): |
|
|
def __init__(self, dim: int, level: int = 3): |
|
|
super().__init__() |
|
|
self.project_down = torch.nn.Linear(dim, 8) |
|
|
self.level = level |
|
|
self.embed = None |
|
|
|
|
|
@torch.inference_mode() |
|
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = rearrange(x, "... d -> (...) d") |
|
|
return x |
|
|
|
|
|
@torch.inference_mode() |
|
|
def encode(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x_shape = x.shape |
|
|
|
|
|
x = self.preprocess(x) |
|
|
|
|
|
h = self.project_down(x).float() |
|
|
h = h.tanh() |
|
|
h = h * 0.9990000128746033 |
|
|
h = h.round() + 1 |
|
|
|
|
|
powers = torch.pow(self.level, torch.arange(2**self.level, device=x.device, dtype=h.dtype)) |
|
|
mu = torch.sum(h * powers.unsqueeze(0), dim=-1) |
|
|
ind = mu.reshape(x_shape[0], x_shape[1]).int() |
|
|
return ind |
|
|
|
|
|
@torch.inference_mode() |
|
|
def decode(self, embed_ind: torch.Tensor) -> torch.Tensor: |
|
|
raise NotImplementedError("There is no official up project component provided") |
|
|
|
|
|
|
|
|
class FSQVectorQuantization(torch.nn.Module): |
|
|
"""Vector quantization implementation (inference-only). |
|
|
Args: |
|
|
dim (int): Dimension |
|
|
codebook_size (int): Codebook size |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
codebook_size: int, |
|
|
): |
|
|
super().__init__() |
|
|
assert 3**8 == codebook_size |
|
|
self._codebook = FSQCodebook(dim=dim, level=3) |
|
|
self.codebook_size = codebook_size |
|
|
|
|
|
@property |
|
|
def codebook(self): |
|
|
return self._codebook.embed |
|
|
|
|
|
@torch.inference_mode() |
|
|
def encode(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return self._codebook.encode(x) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def decode(self, embed_ind: torch.Tensor) -> torch.Tensor: |
|
|
quantize = self._codebook.decode(embed_ind) |
|
|
quantize = rearrange(quantize, "b n d -> b d n") |
|
|
return quantize |
|
|
|
|
|
|
|
|
class FSMNMultiHeadAttention(MultiHeadAttention): |
|
|
def __init__( |
|
|
self, |
|
|
n_state: int, |
|
|
n_head: int, |
|
|
kernel_size: int = 31, |
|
|
use_sdpa: bool = True, |
|
|
): |
|
|
super().__init__(n_state, n_head) |
|
|
|
|
|
self.fsmn_block = torch.nn.Conv1d( |
|
|
n_state, n_state, kernel_size, stride=1, padding=0, groups=n_state, bias=False |
|
|
) |
|
|
self.left_padding = (kernel_size - 1) // 2 |
|
|
self.right_padding = kernel_size - 1 - self.left_padding |
|
|
self.pad_fn = torch.nn.ConstantPad1d((self.left_padding, self.right_padding), 0.0) |
|
|
|
|
|
self.use_sdpa = use_sdpa |
|
|
|
|
|
def forward_fsmn(self, inputs: torch.Tensor, mask: Optional[torch.Tensor] = None): |
|
|
b, t, _, _ = inputs.size() |
|
|
inputs = inputs.view(b, t, -1) |
|
|
if mask is not None and mask.size(2) > 0: |
|
|
inputs = inputs * mask |
|
|
x = inputs.transpose(1, 2) |
|
|
x = self.pad_fn(x) |
|
|
x = self.fsmn_block(x) |
|
|
x = x.transpose(1, 2) |
|
|
x += inputs |
|
|
return x * mask |
|
|
|
|
|
def qkv_attention( |
|
|
self, |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
v: torch.Tensor, |
|
|
mask: Optional[torch.Tensor] = None, |
|
|
mask_pad: Optional[torch.Tensor] = None, |
|
|
freqs_cis: Optional[torch.Tensor] = None, |
|
|
): |
|
|
_, _, D = q.shape |
|
|
scale = (D // self.n_head) ** -0.25 |
|
|
q = q.view(*q.shape[:2], self.n_head, -1) |
|
|
k = k.view(*k.shape[:2], self.n_head, -1) |
|
|
v = v.view(*v.shape[:2], self.n_head, -1) |
|
|
|
|
|
if freqs_cis is not None: |
|
|
q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis) |
|
|
|
|
|
fsm_memory = self.forward_fsmn(v, mask_pad) |
|
|
|
|
|
q = q.permute(0, 2, 1, 3) * scale |
|
|
v = v.permute(0, 2, 1, 3) |
|
|
|
|
|
if not self.use_sdpa: |
|
|
k = k.permute(0, 2, 3, 1) * scale |
|
|
qk = q @ k |
|
|
if mask is not None: |
|
|
qk = qk + mask |
|
|
qk = qk.float() |
|
|
w = torch.nn.functional.softmax(qk, dim=-1).to(q.dtype) |
|
|
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach(), fsm_memory |
|
|
else: |
|
|
k = k.permute(0, 2, 1, 3) * scale |
|
|
assert mask is not None |
|
|
output = torch.nn.functional.scaled_dot_product_attention( |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
attn_mask=mask, |
|
|
dropout_p=0.0, |
|
|
scale=1.0, |
|
|
) |
|
|
output = output.transpose(1, 2).contiguous().view(q.size(0), -1, D) |
|
|
return output, None, fsm_memory |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
mask: Optional[torch.Tensor] = None, |
|
|
mask_pad: Optional[torch.Tensor] = None, |
|
|
freqs_cis: Optional[torch.Tensor] = None, |
|
|
): |
|
|
q = self.query(x) |
|
|
k = self.key(x) |
|
|
v = self.value(x) |
|
|
|
|
|
wv, qk, fsm_memory = self.qkv_attention(q, k, v, mask, mask_pad, freqs_cis) |
|
|
return self.out(wv) + fsm_memory, qk |
|
|
|
|
|
|
|
|
class ResidualAttentionBlock(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
n_state: int, |
|
|
n_head: int, |
|
|
kernel_size: int = 31, |
|
|
use_sdpa: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.attn = FSMNMultiHeadAttention(n_state, n_head, kernel_size, use_sdpa=use_sdpa) |
|
|
self.attn_ln = LayerNorm(n_state, eps=1e-6) |
|
|
|
|
|
n_mlp = n_state * 4 |
|
|
|
|
|
self.mlp = torch.nn.Sequential(Linear(n_state, n_mlp), torch.nn.GELU(), Linear(n_mlp, n_state)) |
|
|
self.mlp_ln = LayerNorm(n_state) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
mask: Optional[torch.Tensor] = None, |
|
|
mask_pad: Optional[torch.Tensor] = None, |
|
|
freqs_cis: Optional[torch.Tensor] = None, |
|
|
): |
|
|
x = x + self.attn(self.attn_ln(x), mask=mask, mask_pad=mask_pad, freqs_cis=freqs_cis)[0] |
|
|
|
|
|
x = x + self.mlp(self.mlp_ln(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class AudioEncoderV2(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
n_mels: int, |
|
|
n_state: int, |
|
|
n_head: int, |
|
|
n_layer: int, |
|
|
stride: int, |
|
|
use_sdpa: bool, |
|
|
): |
|
|
super().__init__() |
|
|
self.stride = stride |
|
|
|
|
|
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, stride=stride, padding=1) |
|
|
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) |
|
|
self.freqs_cis = precompute_freqs_cis(64, 1024 * 2) |
|
|
self.blocks = torch.nn.ModuleList( |
|
|
[ResidualAttentionBlock(n_state, n_head, use_sdpa=use_sdpa) for _ in range(n_layer)] |
|
|
) |
|
|
|
|
|
def forward(self, x: torch.Tensor, x_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
x : torch.Tensor, shape = (batch_size, n_mels, T) |
|
|
the mel spectrogram of the audio |
|
|
x_len: torch.Tensor, shape = (batch_size,) |
|
|
length of each audio in x |
|
|
""" |
|
|
mask = self.make_non_pad_mask(x_len).unsqueeze(1) |
|
|
x = torch.nn.functional.gelu(self.conv1(x * mask)) |
|
|
x_len = (x_len + 2 - 1 * (3 - 1) - 1) // self.stride + 1 |
|
|
mask = self.make_non_pad_mask(x_len).unsqueeze(1) |
|
|
x = torch.nn.functional.gelu(self.conv2(x * mask)) |
|
|
x_len = (x_len + 2 - 1 * (3 - 1) - 1) // 2 + 1 |
|
|
mask = self.make_non_pad_mask(x_len).unsqueeze(1) |
|
|
x = x.permute(0, 2, 1) |
|
|
freqs_cis = self.freqs_cis.to(x.device) |
|
|
mask_pad = mask.transpose(1, 2) |
|
|
mask = self.mask_to_bias(mask, x.dtype) |
|
|
|
|
|
tmp = torch.view_as_real(freqs_cis) |
|
|
cos, sin = tmp[:, :, 0], tmp[:, :, 1] |
|
|
|
|
|
cos = torch.cat((cos, cos), dim=-1) |
|
|
sin = torch.cat((sin, sin), dim=-1) |
|
|
cos = cos.unsqueeze(0).unsqueeze(2) |
|
|
sin = sin.unsqueeze(0).unsqueeze(2) |
|
|
|
|
|
for block in self.blocks: |
|
|
x = block(x, mask.unsqueeze(1), mask_pad, freqs_cis[: x.size(1)]) |
|
|
|
|
|
return x, x_len |
|
|
|
|
|
@staticmethod |
|
|
def make_non_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
|
"""Make mask tensor containing indices of non-padded part. |
|
|
The sequences in a batch may have different lengths. To enable |
|
|
batch computing, padding is need to make all sequence in same |
|
|
size. To avoid the padding part pass value to context dependent |
|
|
block such as attention or convolution , this padding part is |
|
|
masked. |
|
|
1 for non-padded part and 0 for padded part. |
|
|
Parameters |
|
|
---------- |
|
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
|
Returns: |
|
|
------- |
|
|
torch.Tensor: Mask tensor containing indices of padded part (B, max_T). |
|
|
Examples: |
|
|
>>> import torch |
|
|
>>> import s3tokenizer |
|
|
>>> lengths = torch.tensor([5, 3, 2]) |
|
|
>>> masks = s3tokenizer.make_non_pad_mask(lengths) |
|
|
masks = [[1, 1, 1, 1, 1], |
|
|
[1, 1, 1, 0, 0], |
|
|
[1, 1, 0, 0, 0]] |
|
|
""" |
|
|
batch_size = lengths.size(0) |
|
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
|
seq_range = torch.arange(0, max_len, dtype=torch.int64, device=lengths.device) |
|
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
|
seq_length_expand = lengths.unsqueeze(-1) |
|
|
mask = seq_range_expand >= seq_length_expand |
|
|
return ~mask |
|
|
|
|
|
@staticmethod |
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
|
"""Convert bool-tensor to float-tensor for flash attention. |
|
|
Parameters |
|
|
---------- |
|
|
lengths (torch.Tensor): Batch of lengths (B, ?). |
|
|
Returns: |
|
|
------- |
|
|
torch.Tensor: Mask tensor containing indices of padded part (B, ?). |
|
|
Examples: |
|
|
>>> import torch |
|
|
>>> import s3tokenizer |
|
|
>>> lengths = torch.tensor([5, 3, 2]) |
|
|
>>> masks = self.make_non_pad_mask(lengths) |
|
|
masks = [[1, 1, 1, 1, 1], |
|
|
[1, 1, 1, 0, 0], |
|
|
[1, 1, 0, 0, 0]] |
|
|
>>> new_masks = self.mask_to_bias(masks, torch.float32) |
|
|
new_masks = |
|
|
[[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00], |
|
|
[-0.0000e+00, -0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10], |
|
|
[-0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10, -1.0000e+10]] |
|
|
""" |
|
|
assert mask.dtype == torch.bool |
|
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16] |
|
|
mask = mask.to(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask = (1.0 - mask) * -1.0e10 |
|
|
return mask |
|
|
|
|
|
|
|
|
class CosyvoiceEncoder(nn.Module): |
|
|
"""S3 tokenizer of the CosyVoice2 implementation (inference-only). |
|
|
Args: |
|
|
config (ModelConfig): Config |
|
|
""" |
|
|
|
|
|
def __init__(self, config: ModelConfig = ModelConfig()): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.encoder = AudioEncoderV2( |
|
|
self.config.n_mels, |
|
|
self.config.n_audio_state, |
|
|
self.config.n_audio_head, |
|
|
self.config.n_audio_layer, |
|
|
2, |
|
|
self.config.use_sdpa, |
|
|
) |
|
|
self.quantizer = FSQVectorQuantization( |
|
|
self.config.n_audio_state, |
|
|
self.config.n_codebook_size, |
|
|
) |
|
|
|
|
|
def forward(self, wav: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
mel = self.mel_spectrogram(wav, n_mels=self.config.n_mels) |
|
|
mel_len = torch.tensor([mel.shape[-1]]).to(self.device) |
|
|
return self.quantize(mel, mel_len) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def quantize(self, mel: torch.Tensor, mel_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
hidden, code_len = self.encoder(mel, mel_len) |
|
|
code = self.quantizer.encode(hidden) |
|
|
return code |
|
|
|
|
|
@staticmethod |
|
|
def mel_spectrogram( |
|
|
wav: torch.Tensor, |
|
|
n_mels: int = 80, |
|
|
padding: int = 0, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
This method is based on the whisper.log_mel_spectrogram(). |
|
|
So, don't use this as a general mel spectrogram function. |
|
|
""" |
|
|
device = wav.device |
|
|
if padding > 0: |
|
|
wav = torch.nn.functional.pad(wav, (0, padding)) |
|
|
|
|
|
window = torch.hann_window(400).to(device) |
|
|
stft = torch.stft(wav, 400, 160, window=window, return_complex=True) |
|
|
mag = stft[..., :-1].abs() ** 2 |
|
|
|
|
|
filters = torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=n_mels)).to(device) |
|
|
mel_spec = filters @ mag |
|
|
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
|
log_spec = (log_spec + 4.0) / 4.0 |
|
|
return log_spec |
|
|
|
|
|
@property |
|
|
def device(self): |
|
|
return next(self.parameters()).device |
|
|
|
|
|
def freeze(self): |
|
|
for p in self.parameters(): |
|
|
p.requires_grad = False |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, model_path: str): |
|
|
model = cls() |
|
|
model.load_state_dict(torch.load(model_path, map_location="cpu"), strict=True) |
|
|
model.eval() |
|
|
model.freeze() |
|
|
return model |
|
|
|