Update modeling_omchat.py
Browse files- modeling_omchat.py +80 -6
modeling_omchat.py
CHANGED
|
@@ -42,17 +42,91 @@ from transformers.utils import logging
|
|
| 42 |
|
| 43 |
from .configuration_omchat import InternVisionConfig
|
| 44 |
|
| 45 |
-
try:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
except:
|
| 49 |
-
print('FlashAttention is not installed.')
|
| 50 |
-
has_flash_attn = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
logger = logging.get_logger(__name__)
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
class InternRMSNorm(nn.Module):
|
| 57 |
def __init__(self, hidden_size, eps=1e-6):
|
| 58 |
super().__init__()
|
|
|
|
| 42 |
|
| 43 |
from .configuration_omchat import InternVisionConfig
|
| 44 |
|
| 45 |
+
#try:
|
| 46 |
+
#from .flash_attention import FlashAttention
|
| 47 |
+
has_flash_attn = True
|
| 48 |
+
#except:
|
| 49 |
+
# print('FlashAttention is not installed.')
|
| 50 |
+
# has_flash_attn = False
|
| 51 |
+
from einops import rearrange
|
| 52 |
+
|
| 53 |
+
try: # v1
|
| 54 |
+
from flash_attn.flash_attn_interface import \
|
| 55 |
+
flash_attn_unpadded_qkvpacked_func
|
| 56 |
+
except: # v2
|
| 57 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 58 |
+
|
| 59 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 60 |
+
|
| 61 |
|
| 62 |
|
| 63 |
logger = logging.get_logger(__name__)
|
| 64 |
|
| 65 |
|
| 66 |
+
class FlashAttention(nn.Module):
|
| 67 |
+
"""Implement the scaled dot product attention with softmax.
|
| 68 |
+
Arguments
|
| 69 |
+
---------
|
| 70 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 71 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 72 |
+
runtime)
|
| 73 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 74 |
+
(default: 0.0)
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.softmax_scale = softmax_scale
|
| 80 |
+
self.dropout_p = attention_dropout
|
| 81 |
+
|
| 82 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 83 |
+
max_s=None, need_weights=False):
|
| 84 |
+
"""Implements the multihead softmax attention.
|
| 85 |
+
Arguments
|
| 86 |
+
---------
|
| 87 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 88 |
+
if unpadded: (nnz, 3, h, d)
|
| 89 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 90 |
+
"""
|
| 91 |
+
assert not need_weights
|
| 92 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 93 |
+
assert qkv.is_cuda
|
| 94 |
+
|
| 95 |
+
if cu_seqlens is None:
|
| 96 |
+
batch_size = qkv.shape[0]
|
| 97 |
+
seqlen = qkv.shape[1]
|
| 98 |
+
if key_padding_mask is None:
|
| 99 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 100 |
+
max_s = seqlen
|
| 101 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 102 |
+
device=qkv.device)
|
| 103 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 104 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 105 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 106 |
+
)
|
| 107 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 108 |
+
else:
|
| 109 |
+
nheads = qkv.shape[-2]
|
| 110 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 111 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 112 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 113 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
| 114 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 115 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 116 |
+
)
|
| 117 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 118 |
+
indices, batch_size, seqlen),
|
| 119 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 120 |
+
else:
|
| 121 |
+
assert max_s is not None
|
| 122 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 123 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 124 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
return output, None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
class InternRMSNorm(nn.Module):
|
| 131 |
def __init__(self, hidden_size, eps=1e-6):
|
| 132 |
super().__init__()
|