Update README.md
Browse files
README.md
CHANGED
|
@@ -62,13 +62,14 @@ To simplify the comparison, we chosed the Pass@1 metric for the Python language,
|
|
| 62 |
| Model | HumanEval python pass@1 |
|
| 63 |
| --- |----------------------------------------------------------------------------- |
|
| 64 |
| CodeLlama-7b-hf | 30.5%|
|
| 65 |
-
| opencsg-CodeLlama-7b-v0.1 | **43.9%** |
|
| 66 |
| CodeLlama-13b-hf | 36.0%|
|
| 67 |
-
| opencsg-CodeLlama-13b-v0.1 | **51.2%** |
|
| 68 |
| CodeLlama-34b-hf | 48.2%|
|
| 69 |
-
| opencsg-CodeLlama-34b-v0.1
|
| 70 |
-
| opencsg-CodeLlama-34b-v0.2
|
| 71 |
-
|
|
|
|
| 72 |
|
| 73 |
**TODO**
|
| 74 |
- We will provide more benchmark scores on fine-tuned models in the future.
|
|
@@ -176,12 +177,14 @@ HumanEval 是评估模型在代码生成方面性能的最常见的基准,尤
|
|
| 176 |
| 模型 | HumanEval python pass@1 |
|
| 177 |
| --- |----------------------------------------------------------------------------- |
|
| 178 |
| CodeLlama-7b-hf | 30.5%|
|
| 179 |
-
| opencsg-CodeLlama-7b-v0.1 | **43.9%** |
|
| 180 |
| CodeLlama-13b-hf | 36.0%|
|
| 181 |
-
| opencsg-CodeLlama-13b-v0.1 | **51.2%** |
|
| 182 |
| CodeLlama-34b-hf | 48.2%|
|
| 183 |
-
| opencsg-CodeLlama-34b-v0.1
|
| 184 |
-
| opencsg-CodeLlama-34b-v0.
|
|
|
|
|
|
|
| 185 |
|
| 186 |
**TODO**
|
| 187 |
- 未来我们将提供更多微调模型的在各基准上的分数。
|
|
|
|
| 62 |
| Model | HumanEval python pass@1 |
|
| 63 |
| --- |----------------------------------------------------------------------------- |
|
| 64 |
| CodeLlama-7b-hf | 30.5%|
|
| 65 |
+
| **opencsg-CodeLlama-7b-v0.1** | **43.9%** |
|
| 66 |
| CodeLlama-13b-hf | 36.0%|
|
| 67 |
+
| **opencsg-CodeLlama-13b-v0.1** | **51.2%** |
|
| 68 |
| CodeLlama-34b-hf | 48.2%|
|
| 69 |
+
| **opencsg-CodeLlama-34b-v0.1**| **56.1%** |
|
| 70 |
+
| **opencsg-CodeLlama-34b-v0.2**| **64.0%** |
|
| 71 |
+
| CodeLlama-70b-hf| 53.0% |
|
| 72 |
+
| CodeLlama-70b-Instruct-hf| **67.8%** |
|
| 73 |
|
| 74 |
**TODO**
|
| 75 |
- We will provide more benchmark scores on fine-tuned models in the future.
|
|
|
|
| 177 |
| 模型 | HumanEval python pass@1 |
|
| 178 |
| --- |----------------------------------------------------------------------------- |
|
| 179 |
| CodeLlama-7b-hf | 30.5%|
|
| 180 |
+
| **opencsg-CodeLlama-7b-v0.1** | **43.9%** |
|
| 181 |
| CodeLlama-13b-hf | 36.0%|
|
| 182 |
+
| **opencsg-CodeLlama-13b-v0.1** | **51.2%** |
|
| 183 |
| CodeLlama-34b-hf | 48.2%|
|
| 184 |
+
| **opencsg-CodeLlama-34b-v0.1**| **56.1%** |
|
| 185 |
+
| **opencsg-CodeLlama-34b-v0.2**| **64.0%** |
|
| 186 |
+
| CodeLlama-70b-hf| 53.0% |
|
| 187 |
+
| CodeLlama-70b-Instruct-hf| **67.8%** |
|
| 188 |
|
| 189 |
**TODO**
|
| 190 |
- 未来我们将提供更多微调模型的在各基准上的分数。
|