Abstract
FoundationGait, a scalable self-supervised pretraining framework for gait understanding, achieves state-of-the-art performance across diverse gait tasks and datasets without fine-tuning.
Gait patterns play a critical role in human identification and healthcare analytics, yet current progress remains constrained by small, narrowly designed models that fail to scale or generalize. Building a unified gait foundation model requires addressing two longstanding barriers: (a) Scalability. Why have gait models historically failed to follow scaling laws? (b) Generalization. Can one model serve the diverse gait tasks that have traditionally been studied in isolation? We introduce FoundationGait, the first scalable, self-supervised pretraining framework for gait understanding. Its largest version has nearly 0.13 billion parameters and is pretrained on 12 public gait datasets comprising over 2 million walking sequences. Extensive experiments demonstrate that FoundationGait, with or without fine-tuning, performs robustly across a wide spectrum of gait datasets, conditions, tasks (e.g., human identification, scoliosis screening, depression prediction, and attribute estimation), and even input modality. Notably, it achieves 48.0% zero-shot rank-1 accuracy on the challenging in-the-wild Gait3D dataset (1,000 test subjects) and 64.5% on the largest in-the-lab OU-MVLP dataset (5,000+ test subjects), setting a new milestone in robust gait recognition. Coming code and model: https://github.com/ShiqiYu/OpenGait.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper