Papers
arxiv:2512.06963

VideoVLA: Video Generators Can Be Generalizable Robot Manipulators

Published on Dec 7
· Submitted by taesiri on Dec 9
Authors:
,
,
,
,
,

Abstract

VideoVLA uses a multi-modal Diffusion Transformer to predict actions and visual outcomes from language and image inputs, enabling strong generalization in robotic manipulation tasks.

AI-generated summary

Generalization in robot manipulation is essential for deploying robots in open-world environments and advancing toward artificial general intelligence. While recent Vision-Language-Action (VLA) models leverage large pre-trained understanding models for perception and instruction following, their ability to generalize to novel tasks, objects, and settings remains limited. In this work, we present VideoVLA, a simple approach that explores the potential of transforming large video generation models into robotic VLA manipulators. Given a language instruction and an image, VideoVLA predicts an action sequence as well as the future visual outcomes. Built on a multi-modal Diffusion Transformer, VideoVLA jointly models video, language, and action modalities, using pre-trained video generative models for joint visual and action forecasting. Our experiments show that high-quality imagined futures correlate with reliable action predictions and task success, highlighting the importance of visual imagination in manipulation. VideoVLA demonstrates strong generalization, including imitating other embodiments' skills and handling novel objects. This dual-prediction strategy - forecasting both actions and their visual consequences - explores a paradigm shift in robot learning and unlocks generalization capabilities in manipulation systems.

Community

Paper submitter

Generalization in robot manipulation is essential for deploying robots in open-world environments and advancing toward artificial general intelligence. While recent Vision-Language-Action (VLA) models leverage large pre-trained understanding models for perception and instruction following, their ability to generalize to novel tasks, objects, and settings remains limited. In this work, we present VideoVLA, a simple approach that explores the potential of transforming large video generation models into robotic VLA manipulators. Given a language instruction and an image, VideoVLA predicts an action sequence as well as the future visual outcomes. Built on a multi-modal Diffusion Transformer, VideoVLA jointly models video, language, and action modalities, using pre-trained video generative models for joint visual and action forecasting. Our experiments show that high-quality imagined futures correlate with reliable action predictions and task success, highlighting the importance of visual imagination in manipulation. VideoVLA demonstrates strong generalization, including imitating other embodiments' skills and handling novel objects. This dual-prediction strategy - forecasting both actions and their visual consequences - explores a paradigm shift in robot learning and unlocks generalization capabilities in manipulation systems.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2512.06963 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2512.06963 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2512.06963 in a Space README.md to link it from this page.

Collections including this paper 2