new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers

The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit ionopy.

  • 10 authors
·
Aug 30, 2025

AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs

The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.

  • 12 authors
·
Oct 15, 2025

Connecting the Dots: A Machine Learning Ready Dataset for Ionospheric Forecasting Models

Operational forecasting of the ionosphere remains a critical space weather challenge due to sparse observations, complex coupling across geospatial layers, and a growing need for timely, accurate predictions that support Global Navigation Satellite System (GNSS), communications, aviation safety, as well as satellite operations. As part of the 2025 NASA Heliolab, we present a curated, open-access dataset that integrates diverse ionospheric and heliospheric measurements into a coherent, machine learning-ready structure, designed specifically to support next-generation forecasting models and address gaps in current operational frameworks. Our workflow integrates a large selection of data sources comprising Solar Dynamic Observatory data, solar irradiance indices (F10.7), solar wind parameters (velocity and interplanetary magnetic field), geomagnetic activity indices (Kp, AE, SYM-H), and NASA JPL's Global Ionospheric Maps of Total Electron Content (GIM-TEC). We also implement geospatially sparse data such as the TEC derived from the World-Wide GNSS Receiver Network and crowdsourced Android smartphone measurements. This novel heterogeneous dataset is temporally and spatially aligned into a single, modular data structure that supports both physical and data-driven modeling. Leveraging this dataset, we train and benchmark several spatiotemporal machine learning architectures for forecasting vertical TEC under both quiet and geomagnetically active conditions. This work presents an extensive dataset and modeling pipeline that enables exploration of not only ionospheric dynamics but also broader Sun-Earth interactions, supporting both scientific inquiry and operational forecasting efforts.

  • 11 authors
·
Nov 18, 2025