- Feature Learning for Chord Recognition: The Deep Chroma Extractor We explore frame-level audio feature learning for chord recognition using artificial neural networks. We present the argument that chroma vectors potentially hold enough information to model harmonic content of audio for chord recognition, but that standard chroma extractors compute too noisy features. This leads us to propose a learned chroma feature extractor based on artificial neural networks. It is trained to compute chroma features that encode harmonic information important for chord recognition, while being robust to irrelevant interferences. We achieve this by feeding the network an audio spectrum with context instead of a single frame as input. This way, the network can learn to selectively compensate noise and resolve harmonic ambiguities. We compare the resulting features to hand-crafted ones by using a simple linear frame-wise classifier for chord recognition on various data sets. The results show that the learned feature extractor produces superior chroma vectors for chord recognition. 2 authors · Dec 15, 2016
- MusicGen-Chord: Advancing Music Generation through Chord Progressions and Interactive Web-UI MusicGen is a music generation language model (LM) that can be conditioned on textual descriptions and melodic features. We introduce MusicGen-Chord, which extends this capability by incorporating chord progression features. This model modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors, enabling the generation of music that reflects both chord progressions and textual descriptions. Furthermore, we developed MusicGen-Remixer, an application utilizing MusicGen-Chord to generate remixes of input music conditioned on textual descriptions. Both models are integrated into Replicate's web-UI using cog, facilitating broad accessibility and user-friendly controllable interaction for creating and experiencing AI-generated music. 3 authors · Nov 29, 2024