Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultilingual E5 Text Embeddings: A Technical Report
This technical report presents the training methodology and evaluation results of the open-source multilingual E5 text embedding models, released in mid-2023. Three embedding models of different sizes (small / base / large) are provided, offering a balance between the inference efficiency and embedding quality. The training procedure adheres to the English E5 model recipe, involving contrastive pre-training on 1 billion multilingual text pairs, followed by fine-tuning on a combination of labeled datasets. Additionally, we introduce a new instruction-tuned embedding model, whose performance is on par with state-of-the-art, English-only models of similar sizes. Information regarding the model release can be found at https://github.com/microsoft/unilm/tree/master/e5 .
MetaCLIP 2: A Worldwide Scaling Recipe
Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present MetaCLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, MetaCLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
Contrastive Sequential-Diffusion Learning: An approach to Multi-Scene Instructional Video Synthesis
Action-centric sequence descriptions like recipe instructions and do-it-yourself projects include non-linear patterns in which the next step may require to be visually consistent not on the immediate previous step but on earlier steps. Current video synthesis approaches fail to generate consistent multi-scene videos for such task descriptions. We propose a contrastive sequential video diffusion method that selects the most suitable previously generated scene to guide and condition the denoising process of the next scene. The result is a multi-scene video that is grounded in the scene descriptions and coherent w.r.t the scenes that require consistent visualisation. Our experiments with real-world data demonstrate the practicality and improved consistency of our model compared to prior work.
A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames
Understanding long, real-world videos requires modeling of long-range visual dependencies. To this end, we explore video-first architectures, building on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion. However, we expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed. To mitigate the memory bottleneck, we systematically analyze the memory/accuracy trade-off of various efficient methods: factorized attention, parameter-efficient image-to-video adaptation, input masking, and multi-resolution patchification. Surprisingly, simply masking large portions of the video (up to 75%) during contrastive pre-training proves to be one of the most robust ways to scale encoders to videos up to 4.3 minutes at 1 FPS. Our simple approach for training long video-to-text models, which scales to 1B parameters, does not add new architectural complexity and is able to outperform the popular paradigm of using much larger LLMs as an information aggregator over segment-based information on benchmarks with long-range temporal dependencies (YouCook2, EgoSchema).
Reproducible scaling laws for contrastive language-image learning
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
On Occlusions in Video Action Detection: Benchmark Datasets And Training Recipes
This paper explores the impact of occlusions in video action detection. We facilitate this study by introducing five new benchmark datasets namely O-UCF and O-JHMDB consisting of synthetically controlled static/dynamic occlusions, OVIS-UCF and OVIS-JHMDB consisting of occlusions with realistic motions and Real-OUCF for occlusions in realistic-world scenarios. We formally confirm an intuitive expectation: existing models suffer a lot as occlusion severity is increased and exhibit different behaviours when occluders are static vs when they are moving. We discover several intriguing phenomenon emerging in neural nets: 1) transformers can naturally outperform CNN models which might have even used occlusion as a form of data augmentation during training 2) incorporating symbolic-components like capsules to such backbones allows them to bind to occluders never even seen during training and 3) Islands of agreement can emerge in realistic images/videos without instance-level supervision, distillation or contrastive-based objectives2(eg. video-textual training). Such emergent properties allow us to derive simple yet effective training recipes which lead to robust occlusion models inductively satisfying the first two stages of the binding mechanism (grouping/segregation). Models leveraging these recipes outperform existing video action-detectors under occlusion by 32.3% on O-UCF, 32.7% on O-JHMDB & 2.6% on Real-OUCF in terms of the vMAP metric. The code for this work has been released at https://github.com/rajatmodi62/OccludedActionBenchmark.
Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers
We present Region-aware Open-vocabulary Vision Transformers (RO-ViT) - a contrastive image-text pretraining recipe to bridge the gap between image-level pretraining and open-vocabulary object detection. At the pretraining phase, we propose to randomly crop and resize regions of positional embeddings instead of using the whole image positional embeddings. This better matches the use of positional embeddings at region-level in the detection finetuning phase. In addition, we replace the common softmax cross entropy loss in contrastive learning with focal loss to better learn the informative yet difficult examples. Finally, we leverage recent advances in novel object proposals to improve open-vocabulary detection finetuning. We evaluate our full model on the LVIS and COCO open-vocabulary detection benchmarks and zero-shot transfer. RO-ViT achieves a state-of-the-art 32.1 AP_r on LVIS, surpassing the best existing approach by +5.8 points in addition to competitive zero-shot transfer detection. Surprisingly, RO-ViT improves the image-level representation as well and achieves the state of the art on 9 out of 12 metrics on COCO and Flickr image-text retrieval benchmarks, outperforming competitive approaches with larger models.
Jasper-Token-Compression-600M Technical Report
This technical report presents the training methodology and evaluation results of the open-source Jasper-Token-Compression-600M model, released in November 2025. Building on previous distillation-based recipes from the English Stella and Jasper models, we successfully extend this approach to a bilingual (English and Chinese) domain, further enhancing model performance through the incorporation of contrastive learning. A key innovation of our model is the introduction of a one-dimensional convolution-based token compression module. We dynamically adjust the compression rate during training, enabling the model to learn more robust and efficient compressed text representations. By combining knowledge distillation with token compression techniques, we achieve significant improvements in both embedding quality and inference efficiency. Our model performs with higher efficiency than a traditional 0.6B model while achieving performance comparable to that of an 8B model. For more information on the model release, visit: https://huggingface.co/infgrad/Jasper-Token-Compression-600M.
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (Universal MultimodAl RetrieVal via Embedding Learning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL
MOFI: Learning Image Representations from Noisy Entity Annotated Images
We present MOFI, Manifold OF Images, a new vision foundation model designed to learn image representations from noisy entity annotated images. MOFI differs from previous work in two key aspects: (i) pre-training data, and (ii) training recipe. Regarding data, we introduce a new approach to automatically assign entity labels to images from noisy image-text pairs. Our approach involves employing a named entity recognition model to extract entities from the alt-text, and then using a CLIP model to select the correct entities as labels of the paired image. It's a simple, cost-effective method that can scale to handle billions of web-mined image-text pairs. Through this method, we have created Image-to-Entities (I2E), a new dataset with 1 billion images and 2 million distinct entities, covering rich visual concepts in the wild. Building upon the I2E dataset, we study different training recipes like supervised pre-training, contrastive pre-training, and multi-task learning. For contrastive pre-training, we treat entity names as free-form text, and further enrich them with entity descriptions. Experiments show that supervised pre-training with large-scale fine-grained entity labels is highly effective for image retrieval tasks, and multi-task training further improves the performance. The final MOFI model achieves 86.66% mAP on the challenging GPR1200 dataset, surpassing the previous state-of-the-art performance of 72.19% from OpenAI's CLIP model. Further experiments on zero-shot and linear probe image classification also show that MOFI outperforms a CLIP model trained on the original image-text data, demonstrating the effectiveness of the I2E dataset in learning strong image representations. We release our code and model weights at https://github.com/apple/ml-mofi.
jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) is a highly effective method for aligning images and texts in a shared embedding space. These models are widely used for tasks such as cross-modal information retrieval and multi-modal understanding. However, CLIP models often struggle with text-only tasks, underperforming compared to specialized text models. This performance disparity forces retrieval systems to rely on separate models for text-only and multi-modal tasks. In this work, we build upon our previous model, jina-clip-v1, by introducing a refined framework that utilizes multi-task, multi-stage contrastive learning across multiple languages, coupled with an improved training recipe to enhance text-only retrieval. The resulting model, jina-clip-v2, outperforms its predecessor on text-only and multimodal tasks, while adding multilingual support, better understanding of complex visual documents and efficiency gains thanks to Matryoshka Representation Learning and vector truncation. The model performs comparably to the state-of-the-art in both multilingual-multimodal and multilingual text retrieval benchmarks, addressing the challenge of unifying text-only and multi-modal retrieval systems.
CLMSM: A Multi-Task Learning Framework for Pre-training on Procedural Text
In this paper, we propose CLMSM, a domain-specific, continual pre-training framework, that learns from a large set of procedural recipes. CLMSM uses a Multi-Task Learning Framework to optimize two objectives - a) Contrastive Learning using hard triplets to learn fine-grained differences across entities in the procedures, and b) a novel Mask-Step Modelling objective to learn step-wise context of a procedure. We test the performance of CLMSM on the downstream tasks of tracking entities and aligning actions between two procedures on three datasets, one of which is an open-domain dataset not conforming with the pre-training dataset. We show that CLMSM not only outperforms baselines on recipes (in-domain) but is also able to generalize to open-domain procedural NLP tasks.
A Named Entity Based Approach to Model Recipes
Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.
LLaVA-Chef: A Multi-modal Generative Model for Food Recipes
In the rapidly evolving landscape of online recipe sharing within a globalized context, there has been a notable surge in research towards comprehending and generating food recipes. Recent advancements in large language models (LLMs) like GPT-2 and LLaVA have paved the way for Natural Language Processing (NLP) approaches to delve deeper into various facets of food-related tasks, encompassing ingredient recognition and comprehensive recipe generation. Despite impressive performance and multi-modal adaptability of LLMs, domain-specific training remains paramount for their effective application. This work evaluates existing LLMs for recipe generation and proposes LLaVA-Chef, a novel model trained on a curated dataset of diverse recipe prompts in a multi-stage approach. First, we refine the mapping of visual food image embeddings to the language space. Second, we adapt LLaVA to the food domain by fine-tuning it on relevant recipe data. Third, we utilize diverse prompts to enhance the model's recipe comprehension. Finally, we improve the linguistic quality of generated recipes by penalizing the model with a custom loss function. LLaVA-Chef demonstrates impressive improvements over pretrained LLMs and prior works. A detailed qualitative analysis reveals that LLaVA-Chef generates more detailed recipes with precise ingredient mentions, compared to existing approaches.
Decomposing Generation Networks with Structure Prediction for Recipe Generation
Recipe generation from food images and ingredients is a challenging task, which requires the interpretation of the information from another modality. Different from the image captioning task, where the captions usually have one sentence, cooking instructions contain multiple sentences and have obvious structures. To help the model capture the recipe structure and avoid missing some cooking details, we propose a novel framework: Decomposing Generation Networks (DGN) with structure prediction, to get more structured and complete recipe generation outputs. Specifically, we split each cooking instruction into several phases, and assign different sub-generators to each phase. Our approach includes two novel ideas: (i) learning the recipe structures with the global structure prediction component and (ii) producing recipe phases in the sub-generator output component based on the predicted structure. Extensive experiments on the challenging large-scale Recipe1M dataset validate the effectiveness of our proposed model, which improves the performance over the state-of-the-art results.
50 Ways to Bake a Cookie: Mapping the Landscape of Procedural Texts
The web is full of guidance on a wide variety of tasks, from changing the oil in your car to baking an apple pie. However, as content is created independently, a single task could have thousands of corresponding procedural texts. This makes it difficult for users to view the bigger picture and understand the multiple ways the task could be accomplished. In this work we propose an unsupervised learning approach for summarizing multiple procedural texts into an intuitive graph representation, allowing users to easily explore commonalities and differences. We demonstrate our approach on recipes, a prominent example of procedural texts. User studies show that our representation is intuitive and coherent and that it has the potential to help users with several sensemaking tasks, including adapting recipes for a novice cook and finding creative ways to spice up a dish.
Inverse Cooking: Recipe Generation from Food Images
People enjoy food photography because they appreciate food. Behind each meal there is a story described in a complex recipe and, unfortunately, by simply looking at a food image we do not have access to its preparation process. Therefore, in this paper we introduce an inverse cooking system that recreates cooking recipes given food images. Our system predicts ingredients as sets by means of a novel architecture, modeling their dependencies without imposing any order, and then generates cooking instructions by attending to both image and its inferred ingredients simultaneously. We extensively evaluate the whole system on the large-scale Recipe1M dataset and show that (1) we improve performance w.r.t. previous baselines for ingredient prediction; (2) we are able to obtain high quality recipes by leveraging both image and ingredients; (3) our system is able to produce more compelling recipes than retrieval-based approaches according to human judgment. We make code and models publicly available.
Monte Carlo Tree Search for Recipe Generation using GPT-2
Automatic food recipe generation methods provide a creative tool for chefs to explore and to create new, and interesting culinary delights. Given the recent success of large language models (LLMs), they have the potential to create new recipes that can meet individual preferences, dietary constraints, and adapt to what is in your refrigerator. Existing research on using LLMs to generate recipes has shown that LLMs can be finetuned to generate realistic-sounding recipes. However, on close examination, these generated recipes often fail to meet basic requirements like including chicken as an ingredient in chicken dishes. In this paper, we propose RecipeMC, a text generation method using GPT-2 that relies on Monte Carlo Tree Search (MCTS). RecipeMC allows us to define reward functions to put soft constraints on text generation and thus improve the credibility of the generated recipes. Our results show that human evaluators prefer recipes generated with RecipeMC more often than recipes generated with other baseline methods when compared with real recipes.
Multi-modal Cooking Workflow Construction for Food Recipes
Understanding food recipe requires anticipating the implicit causal effects of cooking actions, such that the recipe can be converted into a graph describing the temporal workflow of the recipe. This is a non-trivial task that involves common-sense reasoning. However, existing efforts rely on hand-crafted features to extract the workflow graph from recipes due to the lack of large-scale labeled datasets. Moreover, they fail to utilize the cooking images, which constitute an important part of food recipes. In this paper, we build MM-ReS, the first large-scale dataset for cooking workflow construction, consisting of 9,850 recipes with human-labeled workflow graphs. Cooking steps are multi-modal, featuring both text instructions and cooking images. We then propose a neural encoder-decoder model that utilizes both visual and textual information to construct the cooking workflow, which achieved over 20% performance gain over existing hand-crafted baselines.
Food Pairing Unveiled: Exploring Recipe Creation Dynamics through Recommender Systems
In the early 2000s, renowned chef Heston Blumenthal formulated his "food pairing" hypothesis, positing that if foods share many flavor compounds, then they tend to taste good when eaten together. In 2011, Ahn et al. conducted a study using a dataset of recipes, ingredients, and flavor compounds, finding that, in Western cuisine, ingredients in recipes often share more flavor compounds than expected by chance, indicating a natural tendency towards food pairing. Building upon Ahn's research, our work applies state-of-the-art collaborative filtering techniques to the dataset, providing a tool that can recommend new foods to add in recipes, retrieve missing ingredients and advise against certain combinations. We create our recommender in two ways, by taking into account ingredients appearances in recipes or shared flavor compounds between foods. While our analysis confirms the existence of food pairing, the recipe-based recommender performs significantly better than the flavor-based one, leading to the conclusion that food pairing is just one of the principles to take into account when creating recipes. Furthermore, and more interestingly, we find that food pairing in data is mostly due to trivial couplings of very similar ingredients, leading to a reconsideration of its current role in recipes, from being an already existing feature to a key to open up new scenarios in gastronomy. Our flavor-based recommender can thus leverage this novel concept and provide a new tool to lead culinary innovation.
RecipeGPT: Generative Pre-training Based Cooking Recipe Generation and Evaluation System
Interests in the automatic generation of cooking recipes have been growing steadily over the past few years thanks to a large amount of online cooking recipes. We present RecipeGPT, a novel online recipe generation and evaluation system. The system provides two modes of text generations: (1) instruction generation from given recipe title and ingredients; and (2) ingredient generation from recipe title and cooking instructions. Its back-end text generation module comprises a generative pre-trained language model GPT-2 fine-tuned on a large cooking recipe dataset. Moreover, the recipe evaluation module allows the users to conveniently inspect the quality of the generated recipe contents and store the results for future reference. RecipeGPT can be accessed online at https://recipegpt.org/.
CookAnything: A Framework for Flexible and Consistent Multi-Step Recipe Image Generation
Cooking is a sequential and visually grounded activity, where each step such as chopping, mixing, or frying carries both procedural logic and visual semantics. While recent diffusion models have shown strong capabilities in text-to-image generation, they struggle to handle structured multi-step scenarios like recipe illustration. Additionally, current recipe illustration methods are unable to adjust to the natural variability in recipe length, generating a fixed number of images regardless of the actual instructions structure. To address these limitations, we present CookAnything, a flexible and consistent diffusion-based framework that generates coherent, semantically distinct image sequences from textual cooking instructions of arbitrary length. The framework introduces three key components: (1) Step-wise Regional Control (SRC), which aligns textual steps with corresponding image regions within a single denoising process; (2) Flexible RoPE, a step-aware positional encoding mechanism that enhances both temporal coherence and spatial diversity; and (3) Cross-Step Consistency Control (CSCC), which maintains fine-grained ingredient consistency across steps. Experimental results on recipe illustration benchmarks show that CookAnything performs better than existing methods in training-based and training-free settings. The proposed framework supports scalable, high-quality visual synthesis of complex multi-step instructions and holds significant potential for broad applications in instructional media, and procedural content creation.
Improved baselines for vision-language pre-training
Contrastive learning has emerged as an efficient framework to learn multimodal representations. CLIP, a seminal work in this area, achieved impressive results by training on paired image-text data using the contrastive loss. Recent work claims improvements over CLIP using additional non-contrastive losses inspired from self-supervised learning. However, it is sometimes hard to disentangle the contribution of these additional losses from other implementation details, e.g., data augmentation or regularization techniques, used to train the model. To shed light on this matter, in this paper, we first propose, implement and evaluate several baselines obtained by combining contrastive learning with recent advances in self-supervised learning. In particular, we use the loss functions that were proven successful for visual self-supervised learning to align image and text modalities. We find that these baselines outperform a basic implementation of CLIP. However, when a stronger training recipe is employed, the advantage disappears. Indeed, we find that a simple CLIP baseline can also be improved substantially, up to a 25% relative improvement on downstream zero-shot tasks, by using well-known training techniques that are popular in other subfields. Moreover, we discover that it is enough to apply image and text augmentations to make up for most of the improvement attained by prior works. With our improved training recipe for CLIP, we obtain state-of-the-art performance on four standard datasets, and consistently outperform prior work (up to +4% on the largest dataset), while being substantially simpler.
Learning Program Representations for Food Images and Cooking Recipes
In this paper, we are interested in modeling a how-to instructional procedure, such as a cooking recipe, with a meaningful and rich high-level representation. Specifically, we propose to represent cooking recipes and food images as cooking programs. Programs provide a structured representation of the task, capturing cooking semantics and sequential relationships of actions in the form of a graph. This allows them to be easily manipulated by users and executed by agents. To this end, we build a model that is trained to learn a joint embedding between recipes and food images via self-supervision and jointly generate a program from this embedding as a sequence. To validate our idea, we crowdsource programs for cooking recipes and show that: (a) projecting the image-recipe embeddings into programs leads to better cross-modal retrieval results; (b) generating programs from images leads to better recognition results compared to predicting raw cooking instructions; and (c) we can generate food images by manipulating programs via optimizing the latent code of a GAN. Code, data, and models are available online.
A Highly Clean Recipe Dataset with Ingredient States Annotation for State Probing Task
Large Language Models (LLMs) are trained on a vast amount of procedural texts, but they do not directly observe real-world phenomena. In the context of cooking recipes, this poses a challenge, as intermediate states of ingredients are often omitted, making it difficult for models to track ingredient states and understand recipes accurately. In this paper, we apply state probing, a method for evaluating a language model's understanding of the world, to the domain of cooking. We propose a new task and dataset for evaluating how well LLMs can recognize intermediate ingredient states during cooking procedures. We first construct a new Japanese recipe dataset with clear and accurate annotations of ingredient state changes, collected from well-structured and controlled recipe texts. Using this dataset, we design three novel tasks to evaluate whether LLMs can track ingredient state transitions and identify ingredients present at intermediate steps. Our experiments with widely used LLMs, such as Llama3.1-70B and Qwen2.5-72B, show that learning ingredient state knowledge improves their understanding of cooking processes, achieving performance comparable to commercial LLMs.
TASTEset -- Recipe Dataset and Food Entities Recognition Benchmark
Food Computing is currently a fast-growing field of research. Natural language processing (NLP) is also increasingly essential in this field, especially for recognising food entities. However, there are still only a few well-defined tasks that serve as benchmarks for solutions in this area. We introduce a new dataset -- called TASTEset -- to bridge this gap. In this dataset, Named Entity Recognition (NER) models are expected to find or infer various types of entities helpful in processing recipes, e.g.~food products, quantities and their units, names of cooking processes, physical quality of ingredients, their purpose, taste. The dataset consists of 700 recipes with more than 13,000 entities to extract. We provide a few state-of-the-art baselines of named entity recognition models, which show that our dataset poses a solid challenge to existing models. The best model achieved, on average, 0.95 F_1 score, depending on the entity type -- from 0.781 to 0.982. We share the dataset and the task to encourage progress on more in-depth and complex information extraction from recipes.
KERL: Knowledge-Enhanced Personalized Recipe Recommendation using Large Language Models
Recent advances in large language models (LLMs) and the abundance of food data have resulted in studies to improve food understanding using LLMs. Despite several recommendation systems utilizing LLMs and Knowledge Graphs (KGs), there has been limited research on integrating food related KGs with LLMs. We introduce KERL, a unified system that leverages food KGs and LLMs to provide personalized food recommendations and generates recipes with associated micro-nutritional information. Given a natural language question, KERL extracts entities, retrieves subgraphs from the KG, which are then fed into the LLM as context to select the recipes that satisfy the constraints. Next, our system generates the cooking steps and nutritional information for each recipe. To evaluate our approach, we also develop a benchmark dataset by curating recipe related questions, combined with constraints and personal preferences. Through extensive experiments, we show that our proposed KG-augmented LLM significantly outperforms existing approaches, offering a complete and coherent solution for food recommendation, recipe generation, and nutritional analysis. Our code and benchmark datasets are publicly available at https://github.com/mohbattharani/KERL.
Calorie Aware Automatic Meal Kit Generation from an Image
Calorie and nutrition research has attained increased interest in recent years. But, due to the complexity of the problem, literature in this area focuses on a limited subset of ingredients or dish types and simple convolutional neural networks or traditional machine learning. Simultaneously, estimation of ingredient portions can help improve calorie estimation and meal re-production from a given image. In this paper, given a single cooking image, a pipeline for calorie estimation and meal re-production for different servings of the meal is proposed. The pipeline contains two stages. In the first stage, a set of ingredients associated with the meal in the given image are predicted. In the second stage, given image features and ingredients, portions of the ingredients and finally the total meal calorie are simultaneously estimated using a deep transformer-based model. Portion estimation introduced in the model helps improve calorie estimation and is also beneficial for meal re-production in different serving sizes. To demonstrate the benefits of the pipeline, the model can be used for meal kits generation. To evaluate the pipeline, the large scale dataset Recipe1M is used. Prior to experiments, the Recipe1M dataset is parsed and explicitly annotated with portions of ingredients. Experiments show that using ingredients and their portions significantly improves calorie estimation. Also, a visual interface is created in which a user can interact with the pipeline to reach accurate calorie estimations and generate a meal kit for cooking purposes.
Food Ingredients Recognition through Multi-label Learning
Automatically constructing a food diary that tracks the ingredients consumed can help people follow a healthy diet. We tackle the problem of food ingredients recognition as a multi-label learning problem. We propose a method for adapting a highly performing state of the art CNN in order to act as a multi-label predictor for learning recipes in terms of their list of ingredients. We prove that our model is able to, given a picture, predict its list of ingredients, even if the recipe corresponding to the picture has never been seen by the model. We make public two new datasets suitable for this purpose. Furthermore, we prove that a model trained with a high variability of recipes and ingredients is able to generalize better on new data, and visualize how it specializes each of its neurons to different ingredients.
Efficient Pre-training for Localized Instruction Generation of Videos
Procedural videos, exemplified by recipe demonstrations, are instrumental in conveying step-by-step instructions. However, understanding such videos is challenging as it involves the precise localization of steps and the generation of textual instructions. Manually annotating steps and writing instructions is costly, which limits the size of current datasets and hinders effective learning. Leveraging large but noisy video-transcript datasets for pre-training can boost performance but demands significant computational resources. Furthermore, transcripts contain irrelevant content and differ in style from human-written instructions. To mitigate these issues, we propose a novel technique, Sieve-&-Swap, to automatically generate high-quality training data for the recipe domain: (i) Sieve: filters irrelevant transcripts and (ii) Swap: acquires high-quality text by replacing transcripts with human-written instruction from a text-only recipe dataset. The resulting dataset is three orders of magnitude smaller than current web-scale datasets but enables efficient training of large-scale models. Alongside Sieve-&-Swap, we propose Procedure Transformer (ProcX), a model for end-to-end step localization and instruction generation for procedural videos. When pre-trained on our curated dataset, this model achieves state-of-the-art performance on YouCook2 and Tasty while using a fraction of the training data. We have released code and dataset.
A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON
"A common decision made by people, whether healthy or with health conditions, is choosing meals like breakfast, lunch, and dinner, comprising combinations of foods for appetizer, main course, side dishes, desserts, and beverages. Often, this decision involves tradeoffs between nutritious choices (e.g., salt and sugar levels, nutrition content) and convenience (e.g., cost and accessibility, cuisine type, food source type). We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons. This solution balances user preferences while accounting for food constituents and cooking processes. Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, learning methods using contextual bandits that show promising preliminary results, and the prototype, usage-inspired, BEACON system."
Contrastive Decoding Improves Reasoning in Large Language Models
We demonstrate that Contrastive Decoding -- a simple, computationally light, and training-free text generation method proposed by Li et al 2022 -- achieves large out-of-the-box improvements over greedy decoding on a variety of reasoning tasks. Originally shown to improve the perceived quality of long-form text generation, Contrastive Decoding searches for strings that maximize a weighted difference in likelihood between strong and weak models. We show that Contrastive Decoding leads LLaMA-65B to outperform LLaMA 2, GPT-3.5 and PaLM 2-L on the HellaSwag commonsense reasoning benchmark, and to outperform LLaMA 2, GPT-3.5 and PaLM-540B on the GSM8K math word reasoning benchmark, in addition to improvements on a collection of other tasks. Analysis suggests that Contrastive Decoding improves over existing methods by preventing some abstract reasoning errors, as well as by avoiding simpler modes such as copying sections of the input during chain-of-thought. Overall, Contrastive Decoding outperforms nucleus sampling for long-form generation and greedy decoding for reasoning tasks, making it a powerful general purpose method for generating text from language models.
FoodMLLM-JP: Leveraging Multimodal Large Language Models for Japanese Recipe Generation
Research on food image understanding using recipe data has been a long-standing focus due to the diversity and complexity of the data. Moreover, food is inextricably linked to people's lives, making it a vital research area for practical applications such as dietary management. Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities, not only in their vast knowledge but also in their ability to handle languages naturally. While English is predominantly used, they can also support multiple languages including Japanese. This suggests that MLLMs are expected to significantly improve performance in food image understanding tasks. We fine-tuned open MLLMs LLaVA-1.5 and Phi-3 Vision on a Japanese recipe dataset and benchmarked their performance against the closed model GPT-4o. We then evaluated the content of generated recipes, including ingredients and cooking procedures, using 5,000 evaluation samples that comprehensively cover Japanese food culture. Our evaluation demonstrates that the open models trained on recipe data outperform GPT-4o, the current state-of-the-art model, in ingredient generation. Our model achieved F1 score of 0.531, surpassing GPT-4o's F1 score of 0.481, indicating a higher level of accuracy. Furthermore, our model exhibited comparable performance to GPT-4o in generating cooking procedure text.
Contrastive Representation Learning: A Framework and Review
Contrastive Learning has recently received interest due to its success in self-supervised representation learning in the computer vision domain. However, the origins of Contrastive Learning date as far back as the 1990s and its development has spanned across many fields and domains including Metric Learning and natural language processing. In this paper we provide a comprehensive literature review and we propose a general Contrastive Representation Learning framework that simplifies and unifies many different contrastive learning methods. We also provide a taxonomy for each of the components of contrastive learning in order to summarise it and distinguish it from other forms of machine learning. We then discuss the inductive biases which are present in any contrastive learning system and we analyse our framework under different views from various sub-fields of Machine Learning. Examples of how contrastive learning has been applied in computer vision, natural language processing, audio processing, and others, as well as in Reinforcement Learning are also presented. Finally, we discuss the challenges and some of the most promising future research directions ahead.
Mixup Your Own Pairs
In representation learning, regression has traditionally received less attention than classification. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we advocate "mixup your own contrastive pairs for supervised contrastive regression", instead of relying solely on real/augmented samples. Specifically, we propose Supervised Contrastive Learning for Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through extensive experiments on six regression datasets including 2D images, volumetric images, text, tabular data, and time-series signals, coupled with theoretical analysis, we demonstrate that SupReMix pre-training fosters continuous ordered representations of regression data, resulting in significant improvement in regression performance. Furthermore, SupReMix is superior to other approaches in a range of regression challenges including transfer learning, imbalanced training data, and scenarios with fewer training samples.
DistiLLM-2: A Contrastive Approach Boosts the Distillation of LLMs
Despite the success of distillation in large language models (LLMs), most prior work applies identical loss functions to both teacher- and student-generated data. These strategies overlook the synergy between loss formulations and data types, leading to a suboptimal performance boost in student models. To address this, we propose DistiLLM-2, a contrastive approach that simultaneously increases the likelihood of teacher responses and decreases that of student responses by harnessing this synergy. Our extensive experiments show that DistiLLM-2 not only builds high-performing student models across a wide range of tasks, including instruction-following and code generation, but also supports diverse applications, such as preference alignment and vision-language extensions. These findings highlight the potential of a contrastive approach to enhance the efficacy of LLM distillation by effectively aligning teacher and student models across varied data types.
Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models
As language models have scaled both their number of parameters and pretraining dataset sizes, the computational cost for pretraining has become intractable except for the most well-resourced teams. This increasing cost makes it ever more important to be able to reuse a model after it has completed pretraining; allowing for a model's abilities to further improve without needing to train from scratch. In this work, we detail a set of guidelines that cover how to design efficacious data distributions and learning rate schedules for continued pretraining of language models. When applying these findings within a continued pretraining run on top of a well-trained 15B parameter model, we show an improvement of 9\% in average model accuracy compared to the baseline of continued training on the pretraining set. The resulting recipe provides a practical starting point with which to begin developing language models through reuse rather than retraining.
An Algorithm for Recommending Groceries Based on an Item Ranking Method
This research proposes a new recommender system algorithm for online grocery shopping. The algorithm is based on the perspective that, since the grocery items are usually bought in bulk, a grocery recommender system should be capable of recommending the items in bulk. The algorithm figures out the possible dishes a user may cook based on the items added to the basket and recommends the ingredients accordingly. Our algorithm does not depend on the user ratings. Customers usually do not have the patience to rate the groceries they purchase. Therefore, algorithms that are not dependent on user ratings need to be designed. Instead of using a brute force search, this algorithm limits the search space to a set of only a few probably food categories. Each food category consists of several food subcategories. For example, "fried rice" and "biryani" are food subcategories that belong to the food category "rice". For each food category, items are ranked according to how well they can differentiate a food subcategory. To each food subcategory in the activated search space, this algorithm attaches a score. The score is calculated based on the rank of the items added to the basket. Once the score exceeds a threshold value, its corresponding subcategory gets activated. The algorithm then uses a basket-to-recipe similarity measure to identify the best recipe matches within the activated subcategories only. This reduces the search space to a great extent. We may argue that this algorithm is similar to the content-based recommender system in some sense, but it does not suffer from the limitations like limited content, over-specialization, or the new user problem.
Continual Contrastive Spoken Language Understanding
Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually, and retraining from scratch is almost always impractical. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss applied only to the rehearsal samples, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
CO2Sum:Contrastive Learning for Factual-Consistent Abstractive Summarization
Generating factual-consistent summaries is a challenging task for abstractive summarization. Previous works mainly encode factual information or perform post-correct/rank after decoding. In this paper, we provide a factual-consistent solution from the perspective of contrastive learning, which is a natural extension of previous works. We propose CO2Sum (Contrastive for Consistency), a contrastive learning scheme that can be easily applied on sequence-to-sequence models for factual-consistent abstractive summarization, proving that the model can be fact-aware without modifying the architecture. CO2Sum applies contrastive learning on the encoder, which can help the model be aware of the factual information contained in the input article, or performs contrastive learning on the decoder, which makes the model to generate factual-correct output summary. What's more, these two schemes are orthogonal and can be combined to further improve faithfulness. Comprehensive experiments on public benchmarks demonstrate that CO2Sum improves the faithfulness on large pre-trained language models and reaches competitive results compared to other strong factual-consistent summarization baselines.
Improving Contrastive Learning of Sentence Embeddings from AI Feedback
Contrastive learning has become a popular approach in natural language processing, particularly for the learning of sentence embeddings. However, the discrete nature of natural language makes it difficult to ensure the quality of positive and negative sample pairs generated through data augmentation methods. Although supervised contrastive learning can produce more accurate sample pairs with human feedback labels, it still lacks fine-grained training signals. In this paper, we propose to improve Contrastive Learning of sentence embeddings from AI Feedback (CLAIF). Our method utilizes AI feedback from large pre-trained language models (LLMs) to construct sample pairs with fine-grained sample similarity scores to improve contrastive learning. Besides, we combine human feedback and AI feedback to provide better supervision signals for supervised contrastive learning of sentence embeddings. Experimental results show that our method achieves state-of-the-art performance on several semantic textual similarity (STS) and transfer learning tasks compared to other unsupervised and supervised contrastive learning methods.
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
Surfacing Biases in Large Language Models using Contrastive Input Decoding
Ensuring that large language models (LMs) are fair, robust and useful requires an understanding of how different modifications to their inputs impact the model's behaviour. In the context of open-text generation tasks, however, such an evaluation is not trivial. For example, when introducing a model with an input text and a perturbed, "contrastive" version of it, meaningful differences in the next-token predictions may not be revealed with standard decoding strategies. With this motivation in mind, we propose Contrastive Input Decoding (CID): a decoding algorithm to generate text given two inputs, where the generated text is likely given one input but unlikely given the other. In this way, the contrastive generations can highlight potentially subtle differences in how the LM output differs for the two inputs in a simple and interpretable manner. We use CID to highlight context-specific biases that are hard to detect with standard decoding strategies and quantify the effect of different input perturbations.
Contrastive Learning of Sentence Embeddings from Scratch
Contrastive learning has been the dominant approach to train state-of-the-art sentence embeddings. Previous studies have typically learned sentence embeddings either through the use of human-annotated natural language inference (NLI) data or via large-scale unlabeled sentences in an unsupervised manner. However, even in the case of unlabeled data, their acquisition presents challenges in certain domains due to various reasons. To address these issues, we present SynCSE, a contrastive learning framework that trains sentence embeddings with synthesized data. Specifically, we explore utilizing large language models to synthesize the required data samples for contrastive learning, including (1) producing positive and negative annotations given unlabeled sentences (SynCSE-partial), and (2) generating sentences along with their corresponding annotations from scratch (SynCSE-scratch). Experimental results on sentence similarity and reranking tasks indicate that both SynCSE-partial and SynCSE-scratch greatly outperform unsupervised baselines, and SynCSE-partial even achieves comparable performance to the supervised models in most settings.
Bag of Tricks for Effective Language Model Pretraining and Downstream Adaptation: A Case Study on GLUE
This technical report briefly describes our JDExplore d-team's submission Vega v1 on the General Language Understanding Evaluation (GLUE) leaderboard, where GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference. [Method] We investigate several effective strategies and choose their best combination setting as the training recipes. As for model structure, we employ the vanilla Transformer with disentangled attention as the basic block encoder. For self-supervised training, we employ the representative denoising objective (i.e., replaced token detection) in phase 1 and combine the contrastive objective (i.e., sentence embedding contrastive learning) with it in phase 2. During fine-tuning, several advanced techniques such as transductive fine-tuning, self-calibrated fine-tuning, and adversarial fine-tuning are adopted. [Results] According to our submission record (Jan. 2022), with our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3. Encouragingly, our Vega v1 is the first to exceed powerful human performance on the two challenging tasks, i.e., SST-2 and WNLI. We believe our empirically successful recipe with a bag of tricks could shed new light on developing efficient discriminative large language models.
Text Transformations in Contrastive Self-Supervised Learning: A Review
Contrastive self-supervised learning has become a prominent technique in representation learning. The main step in these methods is to contrast semantically similar and dissimilar pairs of samples. However, in the domain of Natural Language Processing (NLP), the augmentation methods used in creating similar pairs with regard to contrastive learning (CL) assumptions are challenging. This is because, even simply modifying a word in the input might change the semantic meaning of the sentence, and hence, would violate the distributional hypothesis. In this review paper, we formalize the contrastive learning framework, emphasize the considerations that need to be addressed in the data transformation step, and review the state-of-the-art methods and evaluations for contrastive representation learning in NLP. Finally, we describe some challenges and potential directions for learning better text representations using contrastive methods.
A Primer on Contrastive Pretraining in Language Processing: Methods, Lessons Learned and Perspectives
Modern natural language processing (NLP) methods employ self-supervised pretraining objectives such as masked language modeling to boost the performance of various application tasks. These pretraining methods are frequently extended with recurrence, adversarial or linguistic property masking, and more recently with contrastive learning objectives. Contrastive self-supervised training objectives enabled recent successes in image representation pretraining by learning to contrast input-input pairs of augmented images as either similar or dissimilar. However, in NLP, automated creation of text input augmentations is still very challenging because a single token can invert the meaning of a sentence. For this reason, some contrastive NLP pretraining methods contrast over input-label pairs, rather than over input-input pairs, using methods from Metric Learning and Energy Based Models. In this survey, we summarize recent self-supervised and supervised contrastive NLP pretraining methods and describe where they are used to improve language modeling, few or zero-shot learning, pretraining data-efficiency and specific NLP end-tasks. We introduce key contrastive learning concepts with lessons learned from prior research and structure works by applications and cross-field relations. Finally, we point to open challenges and future directions for contrastive NLP to encourage bringing contrastive NLP pretraining closer to recent successes in image representation pretraining.
Prompting Contrastive Explanations for Commonsense Reasoning Tasks
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, while providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
A Survey on Contrastive Self-supervised Learning
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudo labels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning methods for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we have a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make substantial progress.
CoNT: Contrastive Neural Text Generation
Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms the conventional training framework on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation.
Cooking Up Creativity: Enhancing LLM Creativity through Structured Recombination
Large Language Models (LLMs) excel at many tasks, yet they struggle to produce truly creative, diverse ideas. In this paper, we introduce a novel approach that enhances LLM creativity. We apply LLMs for translating between natural language and structured representations, and perform the core creative leap via cognitively inspired manipulations on these representations. Our notion of creativity goes beyond superficial token-level variations; rather, we recombine structured representations of existing ideas, enabling our system to effectively explore a more abstract landscape of ideas. We demonstrate our approach in the culinary domain with DishCOVER, a model that generates creative recipes. Experiments and domain-expert evaluations reveal that our outputs, which are mostly coherent and feasible, significantly surpass GPT-4o in terms of novelty and diversity, thus outperforming it in creative generation. We hope our work inspires further research into structured creativity in AI.
Contrastive Decoding: Open-ended Text Generation as Optimization
Given a language model (LM), maximum probability is a poor decoding objective for open-ended generation, because it produces short and repetitive text. On the other hand, sampling can often produce incoherent text that drifts from the original topics. We propose contrastive decoding (CD), a reliable decoding approach that optimizes a contrastive objective subject to a plausibility constraint. The contrastive objective returns the difference between the likelihood under a large LM (called the expert, e.g. OPT-13B) and a small LM (called the amateur, e.g. OPT-125M), and the constraint ensures that the outputs are plausible. CD is inspired by the fact that the failures of larger LMs (e.g., repetition, incoherence) are even more prevalent in smaller LMs, and that this difference signals which texts should be preferred. CD requires zero additional training, and produces higher quality text than decoding from the larger LM alone. It also works across model scales (OPT-13B and GPT2-1.5B) and significantly outperforms four strong decoding algorithms (e.g., nucleus, top-k) in automatic and human evaluations across wikipedia, news and story domains.
Contrastive Instruction Tuning
Instruction tuning has been used as a promising approach to improve the performance of large language models (LLMs) on unseen tasks. However, current LLMs exhibit limited robustness to unseen instructions, generating inconsistent outputs when the same instruction is phrased with slightly varied forms or language styles. This behavior indicates LLMs' lack of robustness to textual variations and generalizability to unseen instructions, potentially leading to trustworthiness issues. Accordingly, we propose Contrastive Instruction Tuning, which maximizes the similarity between the hidden representations of semantically equivalent instruction-instance pairs while minimizing the similarity between semantically different ones. To facilitate this approach, we augment the existing FLAN collection by paraphrasing task instructions. Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs' robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy.
RECIPE4U: Student-ChatGPT Interaction Dataset in EFL Writing Education
The integration of generative AI in education is expanding, yet empirical analyses of large-scale and real-world interactions between students and AI systems still remain limited. Addressing this gap, we present RECIPE4U (RECIPE for University), a dataset sourced from a semester-long experiment with 212 college students in English as Foreign Language (EFL) writing courses. During the study, students engaged in dialogues with ChatGPT to revise their essays. RECIPE4U includes comprehensive records of these interactions, including conversation logs, students' intent, students' self-rated satisfaction, and students' essay edit histories. In particular, we annotate the students' utterances in RECIPE4U with 13 intention labels based on our coding schemes. We establish baseline results for two subtasks in task-oriented dialogue systems within educational contexts: intent detection and satisfaction estimation. As a foundational step, we explore student-ChatGPT interaction patterns through RECIPE4U and analyze them by focusing on students' dialogue, essay data statistics, and students' essay edits. We further illustrate potential applications of RECIPE4U dataset for enhancing the incorporation of LLMs in educational frameworks. RECIPE4U is publicly available at https://zeunie.github.io/RECIPE4U/.
Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe
Text embeddings are essential for many tasks, such as document retrieval, clustering, and semantic similarity assessment. In this paper, we study how to contrastively train text embedding models in a compute-optimal fashion, given a suite of pre-trained decoder-only language models. Our innovation is an algorithm that produces optimal configurations of model sizes, data quantities, and fine-tuning methods for text-embedding models at different computational budget levels. The resulting recipe, which we obtain through extensive experiments, can be used by practitioners to make informed design choices for their embedding models. Specifically, our findings suggest that full fine-tuning and low-rank adaptation fine-tuning produce optimal models at lower and higher computational budgets respectively.
CaptainCook4D: A Dataset for Understanding Errors in Procedural Activities
Following step-by-step procedures is an essential component of various activities carried out by individuals in their daily lives. These procedures serve as a guiding framework that helps to achieve goals efficiently, whether it is assembling furniture or preparing a recipe. However, the complexity and duration of procedural activities inherently increase the likelihood of making errors. Understanding such procedural activities from a sequence of frames is a challenging task that demands an accurate interpretation of visual information and the ability to reason about the structure of the activity. To this end, we collect a new egocentric 4D dataset, CaptainCook4D, comprising 384 recordings (94.5 hours) of people performing recipes in real kitchen environments. This dataset consists of two distinct types of activity: one in which participants adhere to the provided recipe instructions and another in which they deviate and induce errors. We provide 5.3K step annotations and 10K fine-grained action annotations and benchmark the dataset for the following tasks: supervised error recognition, multistep localization, and procedure learning
Contrastive Learning for Prompt-Based Few-Shot Language Learners
The impressive performance of GPT-3 using natural language prompts and in-context learning has inspired work on better fine-tuning of moderately-sized models under this paradigm. Following this line of work, we present a contrastive learning framework that clusters inputs from the same class for better generality of models trained with only limited examples. Specifically, we propose a supervised contrastive framework that clusters inputs from the same class under different augmented "views" and repel the ones from different classes. We create different "views" of an example by appending it with different language prompts and contextual demonstrations. Combining a contrastive loss with the standard masked language modeling (MLM) loss in prompt-based few-shot learners, the experimental results show that our method can improve over the state-of-the-art methods in a diverse set of 15 language tasks. Our framework makes minimal assumptions on the task or the base model, and can be applied to many recent methods with little modification. The code will be made available at: https://github.com/yiren-jian/LM-SupCon.
ELR-1000: A Community-Generated Dataset for Endangered Indic Indigenous Languages
We present a culturally-grounded multimodal dataset of 1,060 traditional recipes crowdsourced from rural communities across remote regions of Eastern India, spanning 10 endangered languages. These recipes, rich in linguistic and cultural nuance, were collected using a mobile interface designed for contributors with low digital literacy. Endangered Language Recipes (ELR)-1000 -- captures not only culinary practices but also the socio-cultural context embedded in indigenous food traditions. We evaluate the performance of several state-of-the-art large language models (LLMs) on translating these recipes into English and find the following: despite the models' capabilities, they struggle with low-resource, culturally-specific language. However, we observe that providing targeted context -- including background information about the languages, translation examples, and guidelines for cultural preservation -- leads to significant improvements in translation quality. Our results underscore the need for benchmarks that cater to underrepresented languages and domains to advance equitable and culturally-aware language technologies. As part of this work, we release the ELR-1000 dataset to the NLP community, hoping it motivates the development of language technologies for endangered languages.
Breaking the Batch Barrier (B3) of Contrastive Learning via Smart Batch Mining
Contrastive learning (CL) is a prevalent technique for training embedding models, which pulls semantically similar examples (positives) closer in the representation space while pushing dissimilar ones (negatives) further apart. A key source of negatives are 'in-batch' examples, i.e., positives from other examples in the batch. Effectiveness of such models is hence strongly influenced by the size and quality of training batches. In this work, we propose 'Breaking the Batch Barrier' (B3), a novel batch construction strategy designed to curate high-quality batches for CL. Our approach begins by using a pretrained teacher embedding model to rank all examples in the dataset, from which a sparse similarity graph is constructed. A community detection algorithm is then applied to this graph to identify clusters of examples that serve as strong negatives for one another. The clusters are then used to construct batches that are rich in in-batch negatives. Empirical results on the MMEB multimodal embedding benchmark (36 tasks) demonstrate that our method sets a new state of the art, outperforming previous best methods by +1.3 and +2.9 points at the 7B and 2B model scales, respectively. Notably, models trained with B3 surpass existing state-of-the-art results even with a batch size as small as 64, which is 4-16x smaller than that required by other methods.
CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images
We assemble a dataset of Creative-Commons-licensed (CC) images, which we use to train a set of open diffusion models that are qualitatively competitive with Stable Diffusion 2 (SD2). This task presents two challenges: (1) high-resolution CC images lack the captions necessary to train text-to-image generative models; (2) CC images are relatively scarce. In turn, to address these challenges, we use an intuitive transfer learning technique to produce a set of high-quality synthetic captions paired with curated CC images. We then develop a data- and compute-efficient training recipe that requires as little as 3% of the LAION-2B data needed to train existing SD2 models, but obtains comparable quality. These results indicate that we have a sufficient number of CC images (~70 million) for training high-quality models. Our training recipe also implements a variety of optimizations that achieve ~3X training speed-ups, enabling rapid model iteration. We leverage this recipe to train several high-quality text-to-image models, which we dub the CommonCanvas family. Our largest model achieves comparable performance to SD2 on a human evaluation, despite being trained on our CC dataset that is significantly smaller than LAION and using synthetic captions for training. We release our models, data, and code at https://github.com/mosaicml/diffusion/blob/main/assets/common-canvas.md
DistilCSE: Effective Knowledge Distillation For Contrastive Sentence Embeddings
Large-scale contrastive learning models can learn very informative sentence embeddings, but are hard to serve online due to the huge model size. Therefore, they often play the role of "teacher", transferring abilities to small "student" models through knowledge distillation. However, knowledge distillation inevitably brings some drop in embedding effect. To tackle that, we propose an effective knowledge distillation framework for contrastive sentence embeddings, termed DistilCSE. It first applies knowledge distillation on a large amount of unlabeled data, and then fine-tunes student models through contrastive learning on limited labeled data. To achieve better distillation results, we further propose Contrastive Knowledge Distillation (CKD). CKD uses InfoNCE as the loss function in knowledge distillation, enhancing the objective consistency among teacher model training, knowledge distillation, and student model fine-tuning. Extensive experiments show that student models trained with the proposed DistilCSE and CKD suffer from little or even no performance decrease and consistently outperform the corresponding counterparts of the same parameter size. Impressively, our 110M student model outperforms the latest state-of-the-art model, i.e., Sentence-T5 (11B), with only 1% parameters and 0.25% unlabeled data.
Distillation Contrastive Decoding: Improving LLMs Reasoning with Contrastive Decoding and Distillation
We propose a straightforward approach called Distillation Contrastive Decoding (DCD) to enhance the reasoning capabilities of Large Language Models (LLMs) during inference. In contrast to previous approaches that relied on smaller amateur models or analysis of hidden state differences, DCD employs Contrastive Chain-of-thought Prompting and advanced distillation techniques, including Dropout and Quantization. This approach effectively addresses the limitations of Contrastive Decoding (CD), which typically requires both an expert and an amateur model, thus increasing computational resource demands. By integrating contrastive prompts with distillation, DCD obviates the need for an amateur model and reduces memory usage. Our evaluations demonstrate that DCD significantly enhances LLM performance across a range of reasoning benchmarks, surpassing both CD and existing methods in the GSM8K and StrategyQA datasets.
A Statistical Theory of Contrastive Learning via Approximate Sufficient Statistics
Contrastive learning -- a modern approach to extract useful representations from unlabeled data by training models to distinguish similar samples from dissimilar ones -- has driven significant progress in foundation models. In this work, we develop a new theoretical framework for analyzing data augmentation-based contrastive learning, with a focus on SimCLR as a representative example. Our approach is based on the concept of approximate sufficient statistics, which we extend beyond its original definition in oko2025statistical for contrastive language-image pretraining (CLIP) using KL-divergence. We generalize it to equivalent forms and general f-divergences, and show that minimizing SimCLR and other contrastive losses yields encoders that are approximately sufficient. Furthermore, we demonstrate that these near-sufficient encoders can be effectively adapted to downstream regression and classification tasks, with performance depending on their sufficiency and the error induced by data augmentation in contrastive learning. Concrete examples in linear regression and topic classification are provided to illustrate the broad applicability of our results.
DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings
We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning (Dangovski et al., 2021), which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other "harmful" types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks.
ConsPrompt: Easily Exploiting Contrastive Samples for Few-shot Prompt Learning
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL.
Improved Universal Sentence Embeddings with Prompt-based Contrastive Learning and Energy-based Learning
Contrastive learning has been demonstrated to be effective in enhancing pre-trained language models (PLMs) to derive superior universal sentence embeddings. However, existing contrastive methods still have two limitations. Firstly, previous works may acquire poor performance under domain shift settings, thus hindering the application of sentence representations in practice. We attribute this low performance to the over-parameterization of PLMs with millions of parameters. To alleviate it, we propose PromCSE (Prompt-based Contrastive Learning for Sentence Embeddings), which only trains small-scale Soft Prompt (i.e., a set of trainable vectors) while keeping PLMs fixed. Secondly, the commonly used NT-Xent loss function of contrastive learning does not fully exploit hard negatives in supervised learning settings. To this end, we propose to integrate an Energy-based Hinge loss to enhance the pairwise discriminative power, inspired by the connection between the NT-Xent loss and the Energy-based Learning paradigm. Empirical results on seven standard semantic textual similarity (STS) tasks and a domain-shifted STS task both show the effectiveness of our method compared with the current state-of-the-art sentence embedding models. Our code is publicly avaliable at https://github.com/YJiangcm/PromCSE
CoCoSoDa: Effective Contrastive Learning for Code Search
Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.
PopAlign: Diversifying Contrasting Patterns for a More Comprehensive Alignment
Alignment of large language models (LLMs) involves training models on preference-contrastive output pairs to adjust their responses according to human preferences. To obtain such contrastive pairs, traditional methods like RLHF and RLAIF rely on limited contrasting patterns, such as varying model variants or decoding temperatures. This singularity leads to two issues: (1) alignment is not comprehensive; and thereby (2) models are susceptible to jailbreaking attacks. To address these issues, we investigate how to construct more comprehensive and diversified contrasting patterns to enhance preference data (RQ1) and verify the impact of the diversification of contrasting patterns on model alignment (RQ2). For RQ1, we propose PopAlign, a framework that integrates diversified contrasting patterns across the prompt, model, and pipeline levels, introducing six contrasting strategies that do not require additional feedback labeling procedures. Regarding RQ2, we conduct thorough experiments demonstrating that PopAlign significantly outperforms existing methods, leading to more comprehensive alignment.
Contrastive Loss is All You Need to Recover Analogies as Parallel Lines
While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
Model-Aware Contrastive Learning: Towards Escaping the Dilemmas
Contrastive learning (CL) continuously achieves significant breakthroughs across multiple domains. However, the most common InfoNCE-based methods suffer from some dilemmas, such as uniformity-tolerance dilemma (UTD) and gradient reduction, both of which are related to a P_{ij} term. It has been identified that UTD can lead to unexpected performance degradation. We argue that the fixity of temperature is to blame for UTD. To tackle this challenge, we enrich the CL loss family by presenting a Model-Aware Contrastive Learning (MACL) strategy, whose temperature is adaptive to the magnitude of alignment that reflects the basic confidence of the instance discrimination task, then enables CL loss to adjust the penalty strength for hard negatives adaptively. Regarding another dilemma, the gradient reduction issue, we derive the limits of an involved gradient scaling factor, which allows us to explain from a unified perspective why some recent approaches are effective with fewer negative samples, and summarily present a gradient reweighting to escape this dilemma. Extensive remarkable empirical results in vision, sentence, and graph modality validate our approach's general improvement for representation learning and downstream tasks.
Customizing Language Model Responses with Contrastive In-Context Learning
Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
Distillation Scaling Laws
We provide a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings reduce the risks associated with using distillation at scale; compute allocation for both the teacher and student models can now be done to maximize student performance. We provide compute optimal distillation recipes for when 1) a teacher exists, or 2) a teacher needs training. If many students are to be distilled, or a teacher already exists, distillation outperforms supervised pretraining until a compute level which grows predictably with student size. If one student is to be distilled and a teacher also needs training, supervised learning should be done instead. Additionally, we provide insights across our large scale study of distillation, which increase our understanding of distillation and inform experimental design.
SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
Separating common from salient patterns with Contrastive Representation Learning
Contrastive Analysis is a sub-field of Representation Learning that aims at separating common factors of variation between two datasets, a background (i.e., healthy subjects) and a target (i.e., diseased subjects), from the salient factors of variation, only present in the target dataset. Despite their relevance, current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations. On the other hand, Contrastive Representation Learning has shown tremendous performance leaps in various applications (classification, clustering, etc.). In this work, we propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle and identify two Mutual Information terms to maximize and one to minimize. We decompose the first two terms into an Alignment and a Uniformity term, as commonly done in Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy to prevent information leakage between common and salient distributions. We validate our method, called SepCLR, on three visual datasets and three medical datasets, specifically conceived to assess the pattern separation capability in Contrastive Analysis. Code available at https://github.com/neurospin-projects/2024_rlouiset_sep_clr.
DenoSent: A Denoising Objective for Self-Supervised Sentence Representation Learning
Contrastive-learning-based methods have dominated sentence representation learning. These methods regularize the representation space by pulling similar sentence representations closer and pushing away the dissimilar ones and have been proven effective in various NLP tasks, e.g., semantic textual similarity (STS) tasks. However, it is challenging for these methods to learn fine-grained semantics as they only learn from the inter-sentence perspective, i.e., their supervision signal comes from the relationship between data samples. In this work, we propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective. By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form. Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks, standing up well in comparison to contrastive-learning-based methods. Notably, the proposed intra-sentence denoising objective complements existing inter-sentence contrastive methodologies and can be integrated with them to further enhance performance. Our code is available at https://github.com/xinghaow99/DenoSent.
Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence
Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness -- improving accuracy by 10% on adversarial fact verification and 6% on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.
Poly-View Contrastive Learning
Contrastive learning typically matches pairs of related views among a number of unrelated negative views. Views can be generated (e.g. by augmentations) or be observed. We investigate matching when there are more than two related views which we call poly-view tasks, and derive new representation learning objectives using information maximization and sufficient statistics. We show that with unlimited computation, one should maximize the number of related views, and with a fixed compute budget, it is beneficial to decrease the number of unique samples whilst increasing the number of views of those samples. In particular, poly-view contrastive models trained for 128 epochs with batch size 256 outperform SimCLR trained for 1024 epochs at batch size 4096 on ImageNet1k, challenging the belief that contrastive models require large batch sizes and many training epochs.
Pre-training Small Base LMs with Fewer Tokens
We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
Cost-Aware Contrastive Routing for LLMs
We study cost-aware routing for large language models across diverse and dynamic pools of models. Existing approaches often overlook prompt-specific context, rely on expensive model profiling, assume a fixed set of experts, or use inefficient trial-and-error strategies. We introduce Cost-Spectrum Contrastive Routing (CSCR), a lightweight framework that maps both prompts and models into a shared embedding space to enable fast, cost-sensitive selection. CSCR uses compact, fast-to-compute logit footprints for open-source models and perplexity fingerprints for black-box APIs. A contrastive encoder is trained to favor the cheapest accurate expert within adaptive cost bands. At inference time, routing reduces to a single k-NN lookup via a FAISS index, requiring no retraining when the expert pool changes and enabling microsecond latency. Across multiple benchmarks, CSCR consistently outperforms baselines, improving the accuracy-cost tradeoff by up to 25%, while generalizing robustly to unseen LLMs and out-of-distribution prompts.
CLEAR: Contrastive Learning for Sentence Representation
Pre-trained language models have proven their unique powers in capturing implicit language features. However, most pre-training approaches focus on the word-level training objective, while sentence-level objectives are rarely studied. In this paper, we propose Contrastive LEArning for sentence Representation (CLEAR), which employs multiple sentence-level augmentation strategies in order to learn a noise-invariant sentence representation. These augmentations include word and span deletion, reordering, and substitution. Furthermore, we investigate the key reasons that make contrastive learning effective through numerous experiments. We observe that different sentence augmentations during pre-training lead to different performance improvements on various downstream tasks. Our approach is shown to outperform multiple existing methods on both SentEval and GLUE benchmarks.
CaT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
Predicting Implicit Arguments in Procedural Video Instructions
Procedural texts help AI enhance reasoning about context and action sequences. Transforming these into Semantic Role Labeling (SRL) improves understanding of individual steps by identifying predicate-argument structure like {verb,what,where/with}. Procedural instructions are highly elliptic, for instance, (i) add cucumber to the bowl and (ii) add sliced tomatoes, the second step's where argument is inferred from the context, referring to where the cucumber was placed. Prior SRL benchmarks often miss implicit arguments, leading to incomplete understanding. To address this, we introduce Implicit-VidSRL, a dataset that necessitates inferring implicit and explicit arguments from contextual information in multimodal cooking procedures. Our proposed dataset benchmarks multimodal models' contextual reasoning, requiring entity tracking through visual changes in recipes. We study recent multimodal LLMs and reveal that they struggle to predict implicit arguments of what and where/with from multi-modal procedural data given the verb. Lastly, we propose iSRL-Qwen2-VL, which achieves a 17% relative improvement in F1-score for what-implicit and a 14.7% for where/with-implicit semantic roles over GPT-4o.
I Can't Believe There's No Images! Learning Visual Tasks Using only Language Supervision
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from text data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news captioning, and evaluate them on standard benchmarks using images. We find these models perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text-only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.
Domain and Function: A Dual-Space Model of Semantic Relations and Compositions
Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.
Understanding the Behaviour of Contrastive Loss
Unsupervised contrastive learning has achieved outstanding success, while the mechanism of contrastive loss has been less studied. In this paper, we concentrate on the understanding of the behaviours of unsupervised contrastive loss. We will show that the contrastive loss is a hardness-aware loss function, and the temperature {\tau} controls the strength of penalties on hard negative samples. The previous study has shown that uniformity is a key property of contrastive learning. We build relations between the uniformity and the temperature {\tau} . We will show that uniformity helps the contrastive learning to learn separable features, however excessive pursuit to the uniformity makes the contrastive loss not tolerant to semantically similar samples, which may break the underlying semantic structure and be harmful to the formation of features useful for downstream tasks. This is caused by the inherent defect of the instance discrimination objective. Specifically, instance discrimination objective tries to push all different instances apart, ignoring the underlying relations between samples. Pushing semantically consistent samples apart has no positive effect for acquiring a prior informative to general downstream tasks. A well-designed contrastive loss should have some extents of tolerance to the closeness of semantically similar samples. Therefore, we find that the contrastive loss meets a uniformity-tolerance dilemma, and a good choice of temperature can compromise these two properties properly to both learn separable features and tolerant to semantically similar samples, improving the feature qualities and the downstream performances.
Self-Supervised Learning in Event Sequences: A Comparative Study and Hybrid Approach of Generative Modeling and Contrastive Learning
This study investigates self-supervised learning techniques to obtain representations of Event Sequences. It is a key modality in various applications, including but not limited to banking, e-commerce, and healthcare. We perform a comprehensive study of generative and contrastive approaches in self-supervised learning, applying them both independently. We find that there is no single supreme method. Consequently, we explore the potential benefits of combining these approaches. To achieve this goal, we introduce a novel method that aligns generative and contrastive embeddings as distinct modalities, drawing inspiration from contemporary multimodal research. Generative and contrastive approaches are often treated as mutually exclusive, leaving a gap for their combined exploration. Our results demonstrate that this aligned model performs at least on par with, and mostly surpasses, existing methods and is more universal across a variety of tasks. Furthermore, we demonstrate that self-supervised methods consistently outperform the supervised approach on our datasets.
Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia
Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking.
miCSE: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings
This paper presents miCSE, a mutual information-based Contrastive learning framework that significantly advances the state-of-the-art in few-shot sentence embedding. The proposed approach imposes alignment between the attention pattern of different views during contrastive learning. Learning sentence embeddings with miCSE entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. As a result, the proposed approach shows strong performance in the few-shot learning domain. While it achieves superior results compared to state-of-the-art methods on multiple benchmarks in few-shot learning, it is comparable in the full-shot scenario. The proposed approach is conceptually simple, easy to implement and optimize, yet empirically powerful. This study opens up avenues for efficient self-supervised learning methods that are more robust than current contrastive methods for sentence embedding.
Effective Use of Transformer Networks for Entity Tracking
Tracking entities in procedural language requires understanding the transformations arising from actions on entities as well as those entities' interactions. While self-attention-based pre-trained language encoders like GPT and BERT have been successfully applied across a range of natural language understanding tasks, their ability to handle the nuances of procedural texts is still untested. In this paper, we explore the use of pre-trained transformer networks for entity tracking tasks in procedural text. First, we test standard lightweight approaches for prediction with pre-trained transformers, and find that these approaches underperform even simple baselines. We show that much stronger results can be attained by restructuring the input to guide the transformer model to focus on a particular entity. Second, we assess the degree to which transformer networks capture the process dynamics, investigating such factors as merged entities and oblique entity references. On two different tasks, ingredient detection in recipes and QA over scientific processes, we achieve state-of-the-art results, but our models still largely attend to shallow context clues and do not form complex representations of intermediate entity or process state.
A Principled Framework for Multi-View Contrastive Learning
Contrastive Learning (CL), a leading paradigm in Self-Supervised Learning (SSL), typically relies on pairs of data views generated through augmentation. While multiple augmentations per instance (more than two) improve generalization in supervised learning, current CL methods handle additional views suboptimally by simply aggregating different pairwise objectives. This approach suffers from four critical limitations: (L1) it utilizes multiple optimization terms per data point resulting to conflicting objectives, (L2) it fails to model all interactions across views and data points, (L3) it inherits fundamental limitations (e.g. alignment-uniformity coupling) from pairwise CL losses, and (L4) it prevents fully realizing the benefits of increased view multiplicity observed in supervised settings. We address these limitations through two novel loss functions: MV-InfoNCE, which extends InfoNCE to incorporate all possible view interactions simultaneously in one term per data point, and MV-DHEL, which decouples alignment from uniformity across views while scaling interaction complexity with view multiplicity. Both approaches are theoretically grounded - we prove they asymptotically optimize for alignment of all views and uniformity, providing principled extensions to multi-view contrastive learning. Our empirical results on ImageNet1K and three other datasets demonstrate that our methods consistently outperform existing multi-view approaches and effectively scale with increasing view multiplicity. We also apply our objectives to multimodal data and show that, in contrast to other contrastive objectives, they can scale beyond just two modalities. Most significantly, ablation studies reveal that MV-DHEL with five or more views effectively mitigates dimensionality collapse by fully utilizing the embedding space, thereby delivering multi-view benefits observed in supervised learning.
CookGAN: Meal Image Synthesis from Ingredients
In this work we propose a new computational framework, based on generative deep models, for synthesis of photo-realistic food meal images from textual list of its ingredients. Previous works on synthesis of images from text typically rely on pre-trained text models to extract text features, followed by generative neural networks (GAN) aimed to generate realistic images conditioned on the text features. These works mainly focus on generating spatially compact and well-defined categories of objects, such as birds or flowers, but meal images are significantly more complex, consisting of multiple ingredients whose appearance and spatial qualities are further modified by cooking methods. To generate real-like meal images from ingredients, we propose Cook Generative Adversarial Networks (CookGAN), CookGAN first builds an attention-based ingredients-image association model, which is then used to condition a generative neural network tasked with synthesizing meal images. Furthermore, a cycle-consistent constraint is added to further improve image quality and control appearance. Experiments show our model is able to generate meal images corresponding to the ingredients.
Correlation between Alignment-Uniformity and Performance of Dense Contrastive Representations
Recently, dense contrastive learning has shown superior performance on dense prediction tasks compared to instance-level contrastive learning. Despite its supremacy, the properties of dense contrastive representations have not yet been carefully studied. Therefore, we analyze the theoretical ideas of dense contrastive learning using a standard CNN and straightforward feature matching scheme rather than propose a new complex method. Inspired by the analysis of the properties of instance-level contrastive representations through the lens of alignment and uniformity on the hypersphere, we employ and extend the same lens for the dense contrastive representations to analyze their underexplored properties. We discover the core principle in constructing a positive pair of dense features and empirically proved its validity. Also, we introduces a new scalar metric that summarizes the correlation between alignment-and-uniformity and downstream performance. Using this metric, we study various facets of densely learned contrastive representations such as how the correlation changes over single- and multi-object datasets or linear evaluation and dense prediction tasks. The source code is publicly available at: https://github.com/SuperSupermoon/DenseCL-analysis
Meta-optimized Contrastive Learning for Sequential Recommendation
Contrastive Learning (CL) performances as a rising approach to address the challenge of sparse and noisy recommendation data. Although having achieved promising results, most existing CL methods only perform either hand-crafted data or model augmentation for generating contrastive pairs to find a proper augmentation operation for different datasets, which makes the model hard to generalize. Additionally, since insufficient input data may lead the encoder to learn collapsed embeddings, these CL methods expect a relatively large number of training data (e.g., large batch size or memory bank) to contrast. However, not all contrastive pairs are always informative and discriminative enough for the training processing. Therefore, a more general CL-based recommendation model called Meta-optimized Contrastive Learning for sequential Recommendation (MCLRec) is proposed in this work. By applying both data augmentation and learnable model augmentation operations, this work innovates the standard CL framework by contrasting data and model augmented views for adaptively capturing the informative features hidden in stochastic data augmentation. Moreover, MCLRec utilizes a meta-learning manner to guide the updating of the model augmenters, which helps to improve the quality of contrastive pairs without enlarging the amount of input data. Finally, a contrastive regularization term is considered to encourage the augmentation model to generate more informative augmented views and avoid too similar contrastive pairs within the meta updating. The experimental results on commonly used datasets validate the effectiveness of MCLRec.
CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models
A fundamental characteristic of audio is its compositional nature. Audio-language models (ALMs) trained using a contrastive approach (e.g., CLAP) that learns a shared representation between audio and language modalities have improved performance in many downstream applications, including zero-shot audio classification, audio retrieval, etc. However, the ability of these models to effectively perform compositional reasoning remains largely unexplored and necessitates additional research. In this paper, we propose CompA, a collection of two expert-annotated benchmarks with a majority of real-world audio samples, to evaluate compositional reasoning in ALMs. Our proposed CompA-order evaluates how well an ALM understands the order or occurrence of acoustic events in audio, and CompA-attribute evaluates attribute binding of acoustic events. An instance from either benchmark consists of two audio-caption pairs, where both audios have the same acoustic events but with different compositions. An ALM is evaluated on how well it matches the right audio to the right caption. Using this benchmark, we first show that current ALMs perform only marginally better than random chance, thereby struggling with compositional reasoning. Next, we propose CompA-CLAP, where we fine-tune CLAP using a novel learning method to improve its compositional reasoning abilities. To train CompA-CLAP, we first propose improvements to contrastive training with composition-aware hard negatives, allowing for more focused training. Next, we propose a novel modular contrastive loss that helps the model learn fine-grained compositional understanding and overcomes the acute scarcity of openly available compositional audios. CompA-CLAP significantly improves over all our baseline models on the CompA benchmark, indicating its superior compositional reasoning capabilities.
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae
SimCSE: Simple Contrastive Learning of Sentence Embeddings
This paper presents SimCSE, a simple contrastive learning framework that greatly advances state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation, and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework by using "entailment" pairs as positives and "contradiction" pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman's correlation respectively, a 4.2% and 2.2% improvement compared to the previous best results. We also show -- both theoretically and empirically -- that the contrastive learning objective regularizes pre-trained embeddings' anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.
Optimal Sample Complexity of Contrastive Learning
Contrastive learning is a highly successful technique for learning representations of data from labeled tuples, specifying the distance relations within the tuple. We study the sample complexity of contrastive learning, i.e. the minimum number of labeled tuples sufficient for getting high generalization accuracy. We give tight bounds on the sample complexity in a variety of settings, focusing on arbitrary distance functions, both general ell_p-distances, and tree metrics. Our main result is an (almost) optimal bound on the sample complexity of learning ell_p-distances for integer p. For any p ge 1 we show that tilde Theta(min(nd,n^2)) labeled tuples are necessary and sufficient for learning d-dimensional representations of n-point datasets. Our results hold for an arbitrary distribution of the input samples and are based on giving the corresponding bounds on the Vapnik-Chervonenkis/Natarajan dimension of the associated problems. We further show that the theoretical bounds on sample complexity obtained via VC/Natarajan dimension can have strong predictive power for experimental results, in contrast with the folklore belief about a substantial gap between the statistical learning theory and the practice of deep learning.
Phase behavior of Cacio and Pepe sauce
"Pasta alla Cacio e pepe" is a traditional Italian dish made with pasta, pecorino cheese, and pepper. Despite its simple ingredient list, achieving the perfect texture and creaminess of the sauce can be challenging. In this study, we systematically explore the phase behavior of Cacio and pepe sauce, focusing on its stability at increasing temperatures for various proportions of cheese, water, and starch. We identify starch concentration as the key factor influencing sauce stability, with direct implications for practical cooking. Specifically, we delineate a regime where starch concentrations below 1% (relative to cheese mass) lead to the formation of system-wide clumps, a condition determining what we term the "Mozzarella Phase" and corresponding to an unpleasant and separated sauce. Additionally, we examine the impact of cheese concentration relative to water at a fixed starch level, observing a lower critical solution temperature that we theoretically rationalized by means of a minimal effective free-energy model. Finally, we present a scientifically optimized recipe based on our findings, enabling a consistently flawless execution of this classic dish.
Generalization Analysis for Contrastive Representation Learning
Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number k of negative examples while it was widely shown in practice that choosing a large k is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on k, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds.
QCRD: Quality-guided Contrastive Rationale Distillation for Large Language Models
The deployment of large language models (LLMs) faces considerable challenges concerning resource constraints and inference efficiency. Recent research has increasingly focused on smaller, task-specific models enhanced by distilling knowledge from LLMs. However, prior studies have often overlooked the diversity and quality of knowledge, especially the untapped potential of negative knowledge. Constructing effective negative knowledge remains severely understudied. In this paper, we introduce a novel framework called quality-guided contrastive rationale distillation aimed at enhancing reasoning capabilities through contrastive knowledge learning. For positive knowledge, we enrich its diversity through temperature sampling and employ self-consistency for further denoising and refinement. For negative knowledge, we propose an innovative self-adversarial approach that generates low-quality rationales by sampling previous iterations of smaller language models, embracing the idea that one can learn from one's own weaknesses. A contrastive loss is developed to distill both positive and negative knowledge into smaller language models, where an online-updating discriminator is integrated to assess qualities of rationales and assign them appropriate weights, optimizing the training process. Through extensive experiments across multiple reasoning tasks, we demonstrate that our method consistently outperforms existing distillation techniques, yielding higher-quality rationales.
Cross-task weakly supervised learning from instructional videos
In this paper we investigate learning visual models for the steps of ordinary tasks using weak supervision via instructional narrations and an ordered list of steps instead of strong supervision via temporal annotations. At the heart of our approach is the observation that weakly supervised learning may be easier if a model shares components while learning different steps: `pour egg' should be trained jointly with other tasks involving `pour' and `egg'. We formalize this in a component model for recognizing steps and a weakly supervised learning framework that can learn this model under temporal constraints from narration and the list of steps. Past data does not permit systematic studying of sharing and so we also gather a new dataset, CrossTask, aimed at assessing cross-task sharing. Our experiments demonstrate that sharing across tasks improves performance, especially when done at the component level and that our component model can parse previously unseen tasks by virtue of its compositionality.
Decoupled Contrastive Learning
Contrastive learning (CL) is one of the most successful paradigms for self-supervised learning (SSL). In a principled way, it considers two augmented "views" of the same image as positive to be pulled closer, and all other images as negative to be pushed further apart. However, behind the impressive success of CL-based techniques, their formulation often relies on heavy-computation settings, including large sample batches, extensive training epochs, etc. We are thus motivated to tackle these issues and establish a simple, efficient, yet competitive baseline of contrastive learning. Specifically, we identify, from theoretical and empirical studies, a noticeable negative-positive-coupling (NPC) effect in the widely used InfoNCE loss, leading to unsuitable learning efficiency concerning the batch size. By removing the NPC effect, we propose decoupled contrastive learning (DCL) loss, which removes the positive term from the denominator and significantly improves the learning efficiency. DCL achieves competitive performance with less sensitivity to sub-optimal hyperparameters, requiring neither large batches in SimCLR, momentum encoding in MoCo, or large epochs. We demonstrate with various benchmarks while manifesting robustness as much less sensitive to suboptimal hyperparameters. Notably, SimCLR with DCL achieves 68.2% ImageNet-1K top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its SimCLR baseline by 6.4%. Further, DCL can be combined with the SOTA contrastive learning method, NNCLR, to achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs, which represents a new SOTA in contrastive learning. We believe DCL provides a valuable baseline for future contrastive SSL studies.
Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models
This report describes the training dataset creation and recipe behind the family of arctic-embed text embedding models (a set of five models ranging from 22 to 334 million parameters with weights open-sourced under an Apache-2 license). At the time of their release, each model achieved state-of-the-art retrieval accuracy for models of their size on the MTEB Retrieval leaderboard, with the largest model, arctic-embed-l outperforming closed source embedding models such as Cohere's embed-v3 and Open AI's text-embed-3-large. In addition to the details of our training recipe, we have provided several informative ablation studies, which we believe are the cause of our model performance.
Seq vs Seq: An Open Suite of Paired Encoders and Decoders
The large language model (LLM) community focuses almost exclusively on decoder-only language models, since they are easier to use for text generation. However, a large subset of the community still uses encoder-only models for tasks such as classification or retrieval. Previous work has attempted to compare these architectures, but is forced to make comparisons with models that have different numbers of parameters, training techniques, and datasets. We introduce the SOTA open-data Ettin suite of models: paired encoder-only and decoder-only models ranging from 17 million parameters to 1 billion, trained on up to 2 trillion tokens. Using the same recipe for both encoder-only and decoder-only models produces SOTA recipes in both categories for their respective sizes, beating ModernBERT as an encoder and Llama 3.2 and SmolLM2 as decoders. Like previous work, we find that encoder-only models excel at classification and retrieval tasks while decoders excel at generative tasks. However, we show that adapting a decoder model to encoder tasks (and vice versa) through continued training is subpar compared to using only the reverse objective (i.e. a 400M encoder outperforms a 1B decoder on MNLI, and vice versa for generative tasks). We open-source all artifacts of this study including training data, training order segmented by checkpoint, and 200+ checkpoints to allow future work to analyze or extend all aspects of training.
DebCSE: Rethinking Unsupervised Contrastive Sentence Embedding Learning in the Debiasing Perspective
Several prior studies have suggested that word frequency biases can cause the Bert model to learn indistinguishable sentence embeddings. Contrastive learning schemes such as SimCSE and ConSERT have already been adopted successfully in unsupervised sentence embedding to improve the quality of embeddings by reducing this bias. However, these methods still introduce new biases such as sentence length bias and false negative sample bias, that hinders model's ability to learn more fine-grained semantics. In this paper, we reexamine the challenges of contrastive sentence embedding learning from a debiasing perspective and argue that effectively eliminating the influence of various biases is crucial for learning high-quality sentence embeddings. We think all those biases are introduced by simple rules for constructing training data in contrastive learning and the key for contrastive learning sentence embedding is to mimic the distribution of training data in supervised machine learning in unsupervised way. We propose a novel contrastive framework for sentence embedding, termed DebCSE, which can eliminate the impact of these biases by an inverse propensity weighted sampling method to select high-quality positive and negative pairs according to both the surface and semantic similarity between sentences. Extensive experiments on semantic textual similarity (STS) benchmarks reveal that DebCSE significantly outperforms the latest state-of-the-art models with an average Spearman's correlation coefficient of 80.33% on BERTbase.
HPCR: Holistic Proxy-based Contrastive Replay for Online Continual Learning
Online continual learning (OCL) aims to continuously learn new data from a single pass over the online data stream. It generally suffers from the catastrophic forgetting issue. Existing replay-based methods effectively alleviate this issue by replaying part of old data in a proxy-based or contrastive-based replay manner. In this paper, we conduct a comprehensive analysis of these two replay manners and find they can be complementary. Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR), which replaces anchor-to-sample pairs with anchor-to-proxy pairs in the contrastive-based loss to alleviate the phenomenon of forgetting. Based on PCR, we further develop a more advanced method named holistic proxy-based contrastive replay (HPCR), which consists of three components. The contrastive component conditionally incorporates anchor-to-sample pairs to PCR, learning more fine-grained semantic information with a large training batch. The second is a temperature component that decouples the temperature coefficient into two parts based on their impacts on the gradient and sets different values for them to learn more novel knowledge. The third is a distillation component that constrains the learning process to keep more historical knowledge. Experiments on four datasets consistently demonstrate the superiority of HPCR over various state-of-the-art methods.
Continued Pretraining for Better Zero- and Few-Shot Promptability
Recently introduced language model prompting methods can achieve high accuracy in zero- and few-shot settings while requiring few to no learned task-specific parameters. Nevertheless, these methods still often trail behind full model finetuning. In this work, we investigate if a dedicated continued pretraining stage could improve "promptability", i.e., zero-shot performance with natural language prompts or few-shot performance with prompt tuning. We reveal settings where existing continued pretraining methods lack promptability. We also identify current methodological gaps, which we fill with thorough large-scale experiments. We demonstrate that a simple recipe, continued pretraining that incorporates a trainable prompt during multi-task learning, leads to improved promptability in both zero- and few-shot settings compared to existing methods, up to 31% relative. On the other hand, we find that continued pretraining using MAML-style meta-learning, a method that directly optimizes few-shot promptability, yields subpar performance. We validate our findings with two prompt tuning methods, and, based on our results, we provide concrete recommendations to optimize promptability for different use cases.
Improving Factuality of Abstractive Summarization via Contrastive Reward Learning
Modern abstractive summarization models often generate summaries that contain hallucinated or contradictory information. In this paper, we propose a simple but effective contrastive learning framework that incorporates recent developments in reward learning and factuality metrics. Empirical studies demonstrate that the proposed framework enables summarization models to learn from feedback of factuality metrics using contrastive reward learning, leading to more factual summaries by human evaluations. This suggests that further advances in learning and evaluation algorithms can feed directly into providing more factual summaries.
Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
Contrastive Flow Matching
Unconditional flow-matching trains diffusion models to transport samples from a source distribution to a target distribution by enforcing that the flows between sample pairs are unique. However, in conditional settings (e.g., class-conditioned models), this uniqueness is no longer guaranteed--flows from different conditions may overlap, leading to more ambiguous generations. We introduce Contrastive Flow Matching, an extension to the flow matching objective that explicitly enforces uniqueness across all conditional flows, enhancing condition separation. Our approach adds a contrastive objective that maximizes dissimilarities between predicted flows from arbitrary sample pairs. We validate Contrastive Flow Matching by conducting extensive experiments across varying model architectures on both class-conditioned (ImageNet-1k) and text-to-image (CC3M) benchmarks. Notably, we find that training models with Contrastive Flow Matching (1) improves training speed by a factor of up to 9x, (2) requires up to 5x fewer de-noising steps and (3) lowers FID by up to 8.9 compared to training the same models with flow matching. We release our code at: https://github.com/gstoica27/DeltaFM.git.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
ViConBERT: Context-Gloss Aligned Vietnamese Word Embedding for Polysemous and Sense-Aware Representations
Recent advances in contextualized word embeddings have greatly improved semantic tasks such as Word Sense Disambiguation (WSD) and contextual similarity, but most progress has been limited to high-resource languages like English. Vietnamese, in contrast, still lacks robust models and evaluation resources for fine-grained semantic understanding. In this paper, we present ViConBERT, a novel framework for learning Vietnamese contextualized embeddings that integrates contrastive learning (SimCLR) and gloss-based distillation to better capture word meaning. We also introduce ViConWSD, the first large-scale synthetic dataset for evaluating semantic understanding in Vietnamese, covering both WSD and contextual similarity. Experimental results show that ViConBERT outperforms strong baselines on WSD (F1 = 0.87) and achieves competitive performance on ViCon (AP = 0.88) and ViSim-400 (Spearman's rho = 0.60), demonstrating its effectiveness in modeling both discrete senses and graded semantic relations. Our code, models, and data are available at https://github.com/tkhangg0910/ViConBERT
Jigsaw Clustering for Unsupervised Visual Representation Learning
Unsupervised representation learning with contrastive learning achieved great success. This line of methods duplicate each training batch to construct contrastive pairs, making each training batch and its augmented version forwarded simultaneously and leading to additional computation. We propose a new jigsaw clustering pretext task in this paper, which only needs to forward each training batch itself, and reduces the training cost. Our method makes use of information from both intra- and inter-images, and outperforms previous single-batch based ones by a large margin. It is even comparable to the contrastive learning methods when only half of training batches are used. Our method indicates that multiple batches during training are not necessary, and opens the door for future research of single-batch unsupervised methods. Our models trained on ImageNet datasets achieve state-of-the-art results with linear classification, outperforming previous single-batch methods by 2.6%. Models transferred to COCO datasets outperform MoCo v2 by 0.4% with only half of the training batches. Our pretrained models outperform supervised ImageNet pretrained models on CIFAR-10 and CIFAR-100 datasets by 0.9% and 4.1% respectively. Code is available at https://github.com/Jia-Research-Lab/JigsawClustering
BabyLlama-2: Ensemble-Distilled Models Consistently Outperform Teachers With Limited Data
We present BabyLlama-2, a 345 million parameter model distillation-pretrained from two teachers on a 10 million word corpus for the BabyLM competition. On BLiMP and SuperGLUE benchmarks, BabyLlama-2 outperforms baselines trained on both 10 and 100 million word datasets with the same data mix, as well as its teacher models. Through an extensive hyperparameter sweep, we demonstrate that the advantages of distillation cannot be attributed to suboptimal hyperparameter selection of the teachers. Our findings underscore the need for further investigation into distillation techniques, particularly in data-limited settings.
Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Contrastive learning has been applied successfully to learn vector representations of text. Previous research demonstrated that learning high-quality representations benefits from batch-wise contrastive loss with a large number of negatives. In practice, the technique of in-batch negative is used, where for each example in a batch, other batch examples' positives will be taken as its negatives, avoiding encoding extra negatives. This, however, still conditions each example's loss on all batch examples and requires fitting the entire large batch into GPU memory. This paper introduces a gradient caching technique that decouples backpropagation between contrastive loss and the encoder, removing encoder backward pass data dependency along the batch dimension. As a result, gradients can be computed for one subset of the batch at a time, leading to almost constant memory usage.
