Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCoverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
In the past decade, Deep Learning (DL) systems have been widely deployed in various domains to facilitate our daily life. Meanwhile, it is extremely challenging to ensure the correctness of DL systems (e.g., due to their intrinsic nondeterminism), and bugs in DL systems can cause serious consequences and may even threaten human lives. In the literature, researchers have explored various techniques to test, analyze, and verify DL models, since their quality directly affects the corresponding system behaviors. Recently, researchers have also proposed novel techniques for testing the underlying operator-level DL libraries (such as TensorFlow and PyTorch), which provide general binary implementations for each high-level DL operator for running various DL models on many platforms. However, there is still limited work targeting the reliability of the emerging tensor compilers, which aim to directly compile high-level tensor computation graphs into high-performance binaries for better efficiency, portability, and scalability. In this paper, we target the important problem of tensor compiler testing, and have proposed Tzer, a practical fuzzing technique for the widely used TVM tensor compiler. Tzer focuses on mutating the low-level Intermediate Representation (IR) for TVM due to the limited mutation space for the high-level IR. More specifically, Tzer leverages both general-purpose and tensor-compiler-specific mutators guided by coverage feedback for evolutionary IR mutation; furthermore, Tzer also performs pass mutation in tandem with IR mutation for more effective fuzzing. Our results show that Tzer substantially outperforms existing fuzzing techniques on tensor compiler testing, with 75% higher coverage and 50% more valuable tests than the 2nd-best technique. To date, Tzer has detected 49 previously unknown bugs for TVM, with 37 bugs confirmed and 25 bugs fixed (PR merged).
AutoLibra: Agent Metric Induction from Open-Ended Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback, e.g., "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own", into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques
We initiate the study of Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations. We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective MARLHF, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We utilize imitation learning to approximate the reference policy, ensuring stability and effectiveness in training. Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
Human Feedback is not Gold Standard
Human feedback has become the de facto standard for evaluating the performance of Large Language Models, and is increasingly being used as a training objective. However, it is not clear which properties of a generated output this single `preference' score captures. We hypothesise that preference scores are subjective and open to undesirable biases. We critically analyse the use of human feedback for both training and evaluation, to verify whether it fully captures a range of crucial error criteria. We find that while preference scores have fairly good coverage, they under-represent important aspects like factuality. We further hypothesise that both preference scores and error annotation may be affected by confounders, and leverage instruction-tuned models to generate outputs that vary along two possible confounding dimensions: assertiveness and complexity. We find that the assertiveness of an output skews the perceived rate of factuality errors, indicating that human annotations are not a fully reliable evaluation metric or training objective. Finally, we offer preliminary evidence that using human feedback as a training objective disproportionately increases the assertiveness of model outputs. We encourage future work to carefully consider whether preference scores are well aligned with the desired objective.
LESER: Learning to Expand via Search Engine-feedback Reinforcement in e-Commerce
User queries in e-commerce search are often vague, short, and underspecified, making it difficult for retrieval systems to match them accurately against structured product catalogs. This challenge is amplified by the one-to-many nature of user intent, where a single query can imply diverse and competing needs. Existing methods, including neural query expansion and prompting-based LLM approaches, fall short in real-world settings: they struggle to capture nuanced user intent, often generate outputs that violate platform constraints, and rely on workflows that are difficult to scale in production. We propose Learning to Expand via Search Engine-feedback Reinforcement (LESER), a novel framework that fine-tunes a context-aware LLM using real-time search engine feedback as supervision. LESER formulates query expansion as a retrieval optimization task and leverages Group Relative Policy Optimization to learn directly from relevance and coverage metrics. LESER is trained to reason over search results and produce high quality query expansions that align with platform rules and retrieval objectives. We evaluate LESER on large-scale, real-world e-commerce datasets, demonstrating substantial improvements in both offline and online settings. Our results show that LESER not only enhances semantic coverage and retrieval relevance but also delivers measurable gains in user engagement, making it a practical and scalable solution for modern search systems.
TestForge: Feedback-Driven, Agentic Test Suite Generation
Automated test generation holds great promise for alleviating the burdens of manual test creation. However, existing search-based techniques compromise on test readability, while LLM-based approaches are prohibitively expensive in practice. We present TestForge, an agentic unit testing framework designed to cost-effectively generate high-quality test suites for real-world code. Our key insight is to reframe LLM-based test generation as an iterative process. TestForge thus begins with tests generated via zero-shot prompting, and then continuously refines those tests based on feedback from test executions and coverage reports. We evaluate TestForge on TestGenEval, a real world unit test generation benchmark sourced from 11 large scale open source repositories; we show that TestForge achieves a pass@1 rate of 84.3%, 44.4% line coverage and 33.8% mutation score on average, outperforming prior classical approaches and a one-iteration LLM-based baseline. TestForge produces more natural and understandable tests compared to state-of-the-art search-based techniques, and offers substantial cost savings over LLM-based techniques (at $0.63 per file). Finally, we release a version of TestGenEval integrated with the OpenHands platform, a popular open-source framework featuring a diverse set of software engineering agents and agentic benchmarks, for future extension and development.
Tibyan Corpus: Balanced and Comprehensive Error Coverage Corpus Using ChatGPT for Arabic Grammatical Error Correction
Natural language processing (NLP) utilizes text data augmentation to overcome sample size constraints. Increasing the sample size is a natural and widely used strategy for alleviating these challenges. In this study, we chose Arabic to increase the sample size and correct grammatical errors. Arabic is considered one of the languages with limited resources for grammatical error correction (GEC). Furthermore, QALB-14 and QALB-15 are the only datasets used in most Arabic grammatical error correction research, with approximately 20,500 parallel examples, which is considered low compared with other languages. Therefore, this study aims to develop an Arabic corpus called "Tibyan" for grammatical error correction using ChatGPT. ChatGPT is used as a data augmenter tool based on a pair of Arabic sentences containing grammatical errors matched with a sentence free of errors extracted from Arabic books, called guide sentences. Multiple steps were involved in establishing our corpus, including the collection and pre-processing of a pair of Arabic texts from various sources, such as books and open-access corpora. We then used ChatGPT to generate a parallel corpus based on the text collected previously, as a guide for generating sentences with multiple types of errors. By engaging linguistic experts to review and validate the automatically generated sentences, we ensured that they were correct and error-free. The corpus was validated and refined iteratively based on feedback provided by linguistic experts to improve its accuracy. Finally, we used the Arabic Error Type Annotation tool (ARETA) to analyze the types of errors in the Tibyan corpus. Our corpus contained 49 of errors, including seven types: orthography, morphology, syntax, semantics, punctuation, merge, and split. The Tibyan corpus contains approximately 600 K tokens.
Provably Robust DPO: Aligning Language Models with Noisy Feedback
Learning from preference-based feedback has recently gained traction as a promising approach to align language models with human interests. While these aligned generative models have demonstrated impressive capabilities across various tasks, their dependence on high-quality human preference data poses a bottleneck in practical applications. Specifically, noisy (incorrect and ambiguous) preference pairs in the dataset might restrict the language models from capturing human intent accurately. While practitioners have recently proposed heuristics to mitigate the effect of noisy preferences, a complete theoretical understanding of their workings remain elusive. In this work, we aim to bridge this gap by by introducing a general framework for policy optimization in the presence of random preference flips. We focus on the direct preference optimization (DPO) algorithm in particular since it assumes that preferences adhere to the Bradley-Terry-Luce (BTL) model, raising concerns about the impact of noisy data on the learned policy. We design a novel loss function, which de-bias the effect of noise on average, making a policy trained by minimizing that loss robust to the noise. Under log-linear parameterization of the policy class and assuming good feature coverage of the SFT policy, we prove that the sub-optimality gap of the proposed robust DPO (rDPO) policy compared to the optimal policy is of the order O(1{1-2epsilon}frac{d{n}}), where epsilon < 1/2 is flip rate of labels, d is policy parameter dimension and n is size of dataset. Our experiments on IMDb sentiment generation and Anthropic's helpful-harmless dataset show that rDPO is robust to noise in preference labels compared to vanilla DPO and other heuristics proposed by practitioners.
Principled Reinforcement Learning with Human Feedback from Pairwise or $K$-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL.
ConvCodeWorld: Benchmarking Conversational Code Generation in Reproducible Feedback Environments
Large language models (LLMs) have proven invaluable for code generation, particularly in interactive settings. However, existing code generation benchmarks fail to capture the diverse feedback encountered in multi-turn interactions, limiting our ability to evaluate LLMs in these contexts. To address this gap, we present a set of novel benchmarks that explicitly model the quality of feedback provided to code generation LLMs. Our contributions are threefold: First, we introduce CONVCODEWORLD, a novel and reproducible environment for benchmarking interactive code generation. CONVCODEWORLD simulates 9 distinct interactive code generation scenarios while systematically combining three types of feedback: (a) compilation feedback; (b) execution feedback with varying test coverage; (c) verbal feedback generated by GPT-4o with different levels of expertise. Second, we introduce CONVCODEBENCH, a fast, static version of benchmark that uses pre-generated feedback logs, eliminating the need for costly dynamic verbal feedback generation while maintaining strong Spearman's rank correlations (0.82 to 0.99) with CONVCODEWORLD. Third, extensive evaluations of both closed-source and open-source LLMs including R1-Distill on CONVCODEWORLD reveal key insights: (a) LLM performance varies significantly based on the feedback provided; (b) Weaker LLMs, with sufficient feedback, can outperform single-turn results of state-of-the-art LLMs without feedback; (c) Training on a specific feedback combination can limit an LLM's ability to utilize unseen combinations; (d) LLMs solve problems in fewer turns (high MRR) may not solve as many problems overall (high Recall), and vice versa. All implementations and benchmarks will be made publicly available at https://huggingface.co/spaces/ConvCodeWorld/ConvCodeWorld
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
Interpretation and explanation of deep models is critical towards wide adoption of systems that rely on them. In this paper, we propose a novel scheme for both interpretation as well as explanation in which, given a pretrained model, we automatically identify internal features relevant for the set of classes considered by the model, without relying on additional annotations. We interpret the model through average visualizations of this reduced set of features. Then, at test time, we explain the network prediction by accompanying the predicted class label with supporting visualizations derived from the identified features. In addition, we propose a method to address the artifacts introduced by stridded operations in deconvNet-based visualizations. Moreover, we introduce an8Flower, a dataset specifically designed for objective quantitative evaluation of methods for visual explanation.Experiments on the MNIST,ILSVRC12,Fashion144k and an8Flower datasets show that our method produces detailed explanations with good coverage of relevant features of the classes of interest
LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback
To democratize large language models (LLMs) to most natural languages, it is imperative to make these models capable of understanding and generating texts in many languages, in particular low-resource ones. While recent multilingual LLMs demonstrate remarkable performance in such capabilities, these LLMs still support a limited number of human languages due to the lack of training data for low-resource languages. Moreover, these LLMs are not yet aligned with human preference for downstream tasks, which is crucial for the success of LLMs in English. In this paper, we introduce xLLaMA-100 and xBLOOM-100 (collectively xLLMs-100), which scale the multilingual capabilities of LLaMA and BLOOM to 100 languages. To do so, we construct two datasets: a multilingual instruction dataset including 100 languages, which represents the largest language coverage to date, and a cross-lingual human feedback dataset encompassing 30 languages. We perform multilingual instruction tuning on the constructed instruction data and further align the LLMs with human feedback using the DPO algorithm on our cross-lingual human feedback dataset. We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks. Experimental results show that xLLMs-100 consistently outperforms its peers across the benchmarks by considerable margins, defining a new state-of-the-art multilingual LLM that supports 100 languages.
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment. In this paper, we ask the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system's performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer. We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers. The feedback contains both structured ratings and unstructured natural language explanations. We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers. Project page: https://mcgill-nlp.github.io/feedbackqa/
An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation
Unit tests play a key role in ensuring the correctness of software. However, manually creating unit tests is a laborious task, motivating the need for automation. Large Language Models (LLMs) have recently been applied to this problem, utilizing additional training or few-shot learning on examples of existing tests. This paper presents a large-scale empirical evaluation on the effectiveness of LLMs for automated unit test generation without additional training or manual effort, providing the LLM with the signature and implementation of the function under test, along with usage examples extracted from documentation. We also attempt to repair failed generated tests by re-prompting the model with the failing test and error message. We implement our approach in TestPilot, a test generation tool for JavaScript that automatically generates unit tests for all API functions in an npm package. We evaluate TestPilot using OpenAI's gpt3.5-turbo LLM on 25 npm packages with a total of 1,684 API functions. The generated tests achieve a median statement coverage of 70.2% and branch coverage of 52.8%, significantly improving on Nessie, a recent feedback-directed JavaScript test generation technique, which achieves only 51.3% statement coverage and 25.6% branch coverage. We also find that 92.8% of TestPilot's generated tests have no more than 50% similarity with existing tests (as measured by normalized edit distance), with none of them being exact copies. Finally, we run TestPilot with two additional LLMs, OpenAI's older code-cushman-002 LLM and the open LLM StarCoder. Overall, we observed similar results with the former (68.2% median statement coverage), and somewhat worse results with the latter (54.0% median statement coverage), suggesting that the effectiveness of the approach is influenced by the size and training set of the LLM, but does not fundamentally depend on the specific model.
The Good, the Bad and the Constructive: Automatically Measuring Peer Review's Utility for Authors
Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
Boundless Socratic Learning with Language Games
An agent trained within a closed system can master any desired capability, as long as the following three conditions hold: (a) it receives sufficiently informative and aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it has sufficient capacity and resource. In this position paper, we justify these conditions, and consider what limitations arise from (a) and (b) in closed systems, when assuming that (c) is not a bottleneck. Considering the special case of agents with matching input and output spaces (namely, language), we argue that such pure recursive self-improvement, dubbed "Socratic learning", can boost performance vastly beyond what is present in its initial data or knowledge, and is only limited by time, as well as gradual misalignment concerns. Furthermore, we propose a constructive framework to implement it, based on the notion of language games.
Language Games as the Pathway to Artificial Superhuman Intelligence
The evolution of large language models (LLMs) toward artificial superhuman intelligence (ASI) hinges on data reproduction, a cyclical process in which models generate, curate and retrain on novel data to refine capabilities. Current methods, however, risk getting stuck in a data reproduction trap: optimizing outputs within fixed human-generated distributions in a closed loop leads to stagnation, as models merely recombine existing knowledge rather than explore new frontiers. In this paper, we propose language games as a pathway to expanded data reproduction, breaking this cycle through three mechanisms: (1) role fluidity, which enhances data diversity and coverage by enabling multi-agent systems to dynamically shift roles across tasks; (2) reward variety, embedding multiple feedback criteria that can drive complex intelligent behaviors; and (3) rule plasticity, iteratively evolving interaction constraints to foster learnability, thereby injecting continual novelty. By scaling language games into global sociotechnical ecosystems, human-AI co-evolution generates unbounded data streams that drive open-ended exploration. This framework redefines data reproduction not as a closed loop but as an engine for superhuman intelligence.
On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction
Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer's expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.
Can large language models provide useful feedback on research papers? A large-scale empirical analysis
Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However, the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the quality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4's generated feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers (average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human reviewers is larger for the weaker papers. We then conducted a prospective user study with 308 researchers from 110 US institutions in the field of AI and computational biology to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall, more than half (57.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated feedback can help researchers, we also identify several limitations.
Enhancing Large Language Models for Text-to-Testcase Generation
Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task
System-Level Natural Language Feedback
Natural language (NL) feedback contains rich information about the user experience. Existing studies focus on an instance-level approach, where feedback is used to refine specific examples, disregarding its system-wide application. This paper proposes a general framework for unlocking the system-level use of NL feedback. We show how to use feedback to formalize system-level design decisions in a human-in-the-loop-process -- in order to produce better models. In particular this is done through: (i) metric design for tasks; and (ii) language model prompt design for refining model responses. We conduct two case studies of this approach for improving search query generation and dialog response generation, demonstrating the effectiveness of the use of system-level feedback. We show the combination of system-level feedback and instance-level feedback brings further gains, and that human written instance-level feedback results in more grounded refinements than GPT-3.5 written ones, underlying the importance of human feedback for building systems.
What should I Ask: A Knowledge-driven Approach for Follow-up Questions Generation in Conversational Surveys
Generating follow-up questions on the fly could significantly improve conversational survey quality and user experiences by enabling a more dynamic and personalized survey structure. In this paper, we proposed a novel task for knowledge-driven follow-up question generation in conversational surveys. We constructed a new human-annotated dataset of human-written follow-up questions with dialogue history and labeled knowledge in the context of conversational surveys. Along with the dataset, we designed and validated a set of reference-free Gricean-inspired evaluation metrics to systematically evaluate the quality of generated follow-up questions. We then propose a two-staged knowledge-driven model for the task, which generates informative and coherent follow-up questions by using knowledge to steer the generation process. The experiments demonstrate that compared to GPT-based baseline models, our two-staged model generates more informative, coherent, and clear follow-up questions.
Team-related Features in Code Review Prediction Models
Modern Code Review (MCR) is an informal tool-assisted quality assurance practice. It relies on the asynchronous communication among the authors of code changes and reviewers, who are developers that provide feedback. However, from candidate developers, some are able to provide better feedback than others given a particular context. The selection of reviewers is thus an important task, which can benefit from automated support. Many approaches have been proposed in this direction, using for example data from code review repositories to recommend reviewers. In this paper, we propose the use of team-related features to improve the performance of predictions that are helpful to build code reviewer recommenders, with our target predictions being the identification of reviewers that would participate in a review and the provided amount of feedback. We evaluate the prediction power of these features, which are related to code ownership, workload, and team relationship. This evaluation was done by carefully addressing challenges imposed by the MCR domain, such as temporal aspects of the dataset and unbalanced classes. Moreover, given that it is currently unknown how much past data is needed for building MCR prediction models with acceptable performance, we explore the amount of past data used to build prediction models. Our results show that, individually, features related to code ownership have the best prediction power. However, based on feature selection, we conclude that all proposed features together with lines of code can make the best predictions for both reviewer participation and amount of feedback. Regarding the amount of past data, the timeframes of 3, 6, 9, and 12 months of data produce similar results. Therefore, models can be trained considering short timeframes, thus reducing the computational costs with negligible impact in the prediction performance ...
Learning to Summarize from LLM-generated Feedback
Developing effective text summarizers remains a challenge due to issues like hallucinations, key information omissions, and verbosity in LLM-generated summaries. This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness. We introduce FeedSum, a large-scale dataset containing multi-dimensional LLM feedback on summaries of varying quality across diverse domains. Our experiments show how feedback quality, dimensionality, and granularity influence preference learning, revealing that high-quality, multi-dimensional, fine-grained feedback significantly improves summary generation. We also compare two methods for using this feedback: supervised fine-tuning and direct preference optimization. Finally, we introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries, demonstrating that smaller models can achieve superior performance with appropriate training. The full dataset will be released soon. The SummLlama3-8B model is now available at https://huggingface.co/DISLab/SummLlama3-8B.
Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned (C^2) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in C^2 scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
Reviewer2: Optimizing Review Generation Through Prompt Generation
Recent developments in LLMs offer new opportunities for assisting authors in improving their work. In this paper, we envision a use case where authors can receive LLM-generated reviews that uncover weak points in the current draft. While initial methods for automated review generation already exist, these methods tend to produce reviews that lack detail, and they do not cover the range of opinions that human reviewers produce. To address this shortcoming, we propose an efficient two-stage review generation framework called Reviewer2. Unlike prior work, this approach explicitly models the distribution of possible aspects that the review may address. We show that this leads to more detailed reviews that better cover the range of aspects that human reviewers identify in the draft. As part of the research, we generate a large-scale review dataset of 27k papers and 99k reviews that we annotate with aspect prompts, which we make available as a resource for future research.
LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/arxiv2025-lazy-review)
Learning New Skills after Deployment: Improving open-domain internet-driven dialogue with human feedback
Frozen models trained to mimic static datasets can never improve their performance. Models that can employ internet-retrieval for up-to-date information and obtain feedback from humans during deployment provide the promise of both adapting to new information, and improving their performance. In this work we study how to improve internet-driven conversational skills in such a learning framework. We collect deployment data, which we make publicly available, of human interactions, and collect various types of human feedback -- including binary quality measurements, free-form text feedback, and fine-grained reasons for failure. We then study various algorithms for improving from such feedback, including standard supervised learning, rejection sampling, model-guiding and reward-based learning, in order to make recommendations on which type of feedback and algorithms work best. We find the recently introduced Director model (Arora et al., '22) shows significant improvements over other existing approaches.
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models
We study how to apply large language models to write grounded and organized long-form articles from scratch, with comparable breadth and depth to Wikipedia pages. This underexplored problem poses new challenges at the pre-writing stage, including how to research the topic and prepare an outline prior to writing. We propose STORM, a writing system for the Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking. STORM models the pre-writing stage by (1) discovering diverse perspectives in researching the given topic, (2) simulating conversations where writers carrying different perspectives pose questions to a topic expert grounded on trusted Internet sources, (3) curating the collected information to create an outline. For evaluation, we curate FreshWiki, a dataset of recent high-quality Wikipedia articles, and formulate outline assessments to evaluate the pre-writing stage. We further gather feedback from experienced Wikipedia editors. Compared to articles generated by an outline-driven retrieval-augmented baseline, more of STORM's articles are deemed to be organized (by a 25% absolute increase) and broad in coverage (by 10%). The expert feedback also helps identify new challenges for generating grounded long articles, such as source bias transfer and over-association of unrelated facts.
Learning to Refine with Fine-Grained Natural Language Feedback
Recent work has explored the capability of large language models (LLMs) to identify and correct errors in LLM-generated responses. These refinement approaches frequently evaluate what sizes of models are able to do refinement for what problems, but less attention is paid to what effective feedback for refinement looks like. In this work, we propose looking at refinement with feedback as a composition of three distinct LLM competencies: (1) identification of bad generations; (2) fine-grained natural language feedback generation; (3) refining with fine-grained feedback. The first step can be implemented with a high-performing discriminative model and steps 2 and 3 can be implemented either via prompted or fine-tuned LLMs. A key property of this approach is that the step 2 critique model can give fine-grained feedback about errors, made possible by offloading the discrimination to a separate model in step 1. We show that models of different capabilities benefit from refining with this approach on the task of improving factual consistency of document grounded summaries. Overall, our proposed method consistently outperforms existing end-to-end refinement approaches and current trained models not fine-tuned for factuality critiquing.
Pinpoint, Not Criticize: Refining Large Language Models via Fine-Grained Actionable Feedback
Recent improvements in text generation have leveraged human feedback to improve the quality of the generated output. However, human feedback is not always available, especially during inference. In this work, we propose an inference time optimization method FITO to use fine-grained actionable feedback in the form of error type, error location and severity level that are predicted by a learned error pinpoint model for iterative refinement. FITO starts with an initial output, then iteratively incorporates the feedback via a refinement model that generates an improved output conditioned on the feedback. Given the uncertainty of consistent refined samples at iterative steps, we formulate iterative refinement into a local search problem and develop a simulated annealing based algorithm that balances exploration of the search space and optimization for output quality. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA) and topical summarization. We observe 0.8 and 0.7 MetricX gain on Chinese-English and English-German translation, 4.5 and 1.8 ROUGE-L gain at long form QA and topic summarization respectively, with a single iteration of refinement. With our simulated annealing algorithm, we see further quality improvements, including up to 1.7 MetricX improvements over the baseline approach.
ReFeed: Multi-dimensional Summarization Refinement with Reflective Reasoning on Feedback
Summarization refinement faces challenges when extending to multi-dimension. In this paper, we introduce ReFeed, a powerful summarization refinement pipeline that enhances multiple dimensions through reflective reasoning on feedback. To achieve this, we release SumFeed-CoT, a large-scale Long-CoT-based dataset optimized for training a lightweight model with reflective reasoning. Our experiments reveal how the number of dimensions, feedback exposure, and reasoning policy influence refinement performance, highlighting reflective reasoning and simultaneously addressing multiple feedback is crucial to mitigate trade-off between dimensions. Furthermore, ReFeed is robust to noisy feedback and feedback order. Lastly, our finding emphasizes that creating data with a proper goal and guideline constitutes a fundamental pillar of effective reasoning. The dataset and model will be released.
Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural Language Generation
Many recent advances in natural language generation have been fueled by training large language models on internet-scale data. However, this paradigm can lead to models that generate toxic, inaccurate, and unhelpful content, and automatic evaluation metrics often fail to identify these behaviors. As models become more capable, human feedback is an invaluable signal for evaluating and improving models. This survey aims to provide an overview of the recent research that has leveraged human feedback to improve natural language generation. First, we introduce an encompassing formalization of feedback, and identify and organize existing research into a taxonomy following this formalization. Next, we discuss how feedback can be described by its format and objective, and cover the two approaches proposed to use feedback (either for training or decoding): directly using the feedback or training feedback models. We also discuss existing datasets for human-feedback data collection, and concerns surrounding feedback collection. Finally, we provide an overview of the nascent field of AI feedback, which exploits large language models to make judgments based on a set of principles and minimize the need for human intervention.
Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy.
How does Feedback Signal Quality Impact Effectiveness of Pseudo Relevance Feedback for Passage Retrieval?
Pseudo-Relevance Feedback (PRF) assumes that the top results retrieved by a first-stage ranker are relevant to the original query and uses them to improve the query representation for a second round of retrieval. This assumption however is often not correct: some or even all of the feedback documents may be irrelevant. Indeed, the effectiveness of PRF methods may well depend on the quality of the feedback signal and thus on the effectiveness of the first-stage ranker. This aspect however has received little attention before. In this paper we control the quality of the feedback signal and measure its impact on a range of PRF methods, including traditional bag-of-words methods (Rocchio), and dense vector-based methods (learnt and not learnt). Our results show the important role the quality of the feedback signal plays on the effectiveness of PRF methods. Importantly, and surprisingly, our analysis reveals that not all PRF methods are the same when dealing with feedback signals of varying quality. These findings are critical to gain a better understanding of the PRF methods and of which and when they should be used, depending on the feedback signal quality, and set the basis for future research in this area.
CAT-LM: Training Language Models on Aligned Code And Tests
Testing is an integral part of the software development process. Yet, writing tests is time-consuming and therefore often neglected. Classical test generation tools such as EvoSuite generate behavioral test suites by optimizing for coverage, but tend to produce tests that are hard to understand. Language models trained on code can generate code that is highly similar to that written by humans, but current models are trained to generate each file separately, as is standard practice in natural language processing, and thus fail to consider the code-under-test context when producing a test file. In this work, we propose the Aligned Code And Tests Language Model (CAT-LM), a GPT-style language model with 2.7 Billion parameters, trained on a corpus of Python and Java projects. We utilize a novel pretraining signal that explicitly considers the mapping between code and test files when available. We also drastically increase the maximum sequence length of inputs to 8,192 tokens, 4x more than typical code generation models, to ensure that the code context is available to the model when generating test code. We analyze its usefulness for realistic applications, showing that sampling with filtering (e.g., by compilability, coverage) allows it to efficiently produce tests that achieve coverage similar to ones written by developers while resembling their writing style. By utilizing the code context, CAT-LM generates more valid tests than even much larger language models trained with more data (CodeGen 16B and StarCoder) and substantially outperforms a recent test-specific model (TeCo) at test completion. Overall, our work highlights the importance of incorporating software-specific insights when training language models for code and paves the way to more powerful automated test generation.
Feedback Friction: LLMs Struggle to Fully Incorporate External Feedback
Recent studies have shown LLMs possess some ability to improve their responses when given external feedback. However, it remains unclear how effectively and thoroughly these models can incorporate extrinsic feedback. In an ideal scenario, if LLMs receive near-perfect and complete feedback, we would expect them to fully integrate the feedback and change their incorrect answers to correct ones. In this paper, we systematically investigate LLMs' ability to incorporate feedback by designing a controlled experimental environment. For each problem, a solver model attempts a solution, then a feedback generator with access to near-complete ground-truth answers produces targeted feedback, after which the solver tries again. We evaluate this pipeline across a diverse range of tasks, including math reasoning, knowledge reasoning, scientific reasoning, and general multi-domain evaluations with state-of-the-art language models including Claude 3.7 (with and without extended thinking). Surprisingly, even under these near-ideal conditions, solver models consistently show resistance to feedback, a limitation that we term FEEDBACK FRICTION. To mitigate this limitation, we experiment with sampling-based strategies like progressive temperature increases and explicit rejection of previously attempted incorrect answers, which yield improvements but still fail to help models achieve target performance. We also perform a rigorous exploration of potential causes of FEEDBACK FRICTION, ruling out factors such as model overconfidence and data familiarity. We hope that highlighting this issue in LLMs and ruling out several apparent causes will help future research in self-improvement.
GenX: Mastering Code and Test Generation with Execution Feedback
Recent advancements in language modeling have enabled the translation of natural language into code, and the use of execution feedback to improve code generation. However, these methods often rely heavily on pre-existing test cases, which may not always be available or comprehensive. In this work, we propose a novel approach that concurrently trains a code generation model and a test generation model, utilizing execution feedback to refine and enhance the performance of both. We introduce two strategies for test and code data augmentation and a new scoring function for code and test ranking. We experiment on the APPS dataset and demonstrate that our approach can effectively generate and augment test cases, filter and synthesize correct code solutions, and rank the quality of generated code and tests. The results demonstrate that our models, when iteratively trained with an increasing number of test cases and code solutions, outperform those trained on the original dataset.
SimpleStrat: Diversifying Language Model Generation with Stratification
Generating diverse responses from large language models (LLMs) is crucial for applications such as planning/search and synthetic data generation, where diversity provides distinct answers across generations. Prior approaches rely on increasing temperature to increase diversity. However, contrary to popular belief, we show not only does this approach produce lower quality individual generations as temperature increases, but it depends on model's next-token probabilities being similar to the true distribution of answers. We propose , an alternative approach that uses the language model itself to partition the space into strata. At inference, a random stratum is selected and a sample drawn from within the strata. To measure diversity, we introduce CoverageQA, a dataset of underspecified questions with multiple equally plausible answers, and assess diversity by measuring KL Divergence between the output distribution and uniform distribution over valid ground truth answers. As computing probability per response/solution for proprietary models is infeasible, we measure recall on ground truth solutions. Our evaluation show using SimpleStrat achieves higher recall by 0.05 compared to GPT-4o and 0.36 average reduction in KL Divergence compared to Llama 3.
AutoSurvey: Large Language Models Can Automatically Write Surveys
This paper introduces AutoSurvey, a speedy and well-organized methodology for automating the creation of comprehensive literature surveys in rapidly evolving fields like artificial intelligence. Traditional survey paper creation faces challenges due to the vast volume and complexity of information, prompting the need for efficient survey methods. While large language models (LLMs) offer promise in automating this process, challenges such as context window limitations, parametric knowledge constraints, and the lack of evaluation benchmarks remain. AutoSurvey addresses these challenges through a systematic approach that involves initial retrieval and outline generation, subsection drafting by specialized LLMs, integration and refinement, and rigorous evaluation and iteration. Our contributions include a comprehensive solution to the survey problem, a reliable evaluation method, and experimental validation demonstrating AutoSurvey's effectiveness.We open our resources at https://github.com/AutoSurveys/AutoSurvey.
GPT-4's assessment of its performance in a USMLE-based case study
This study investigates GPT-4's assessment of its performance in healthcare applications. A simple prompting technique was used to prompt the LLM with questions taken from the United States Medical Licensing Examination (USMLE) questionnaire and it was tasked to evaluate its confidence score before posing the question and after asking the question. The questionnaire was categorized into two groups-questions with feedback (WF) and questions with no feedback(NF) post-question. The model was asked to provide absolute and relative confidence scores before and after each question. The experimental findings were analyzed using statistical tools to study the variability of confidence in WF and NF groups. Additionally, a sequential analysis was conducted to observe the performance variation for the WF and NF groups. Results indicate that feedback influences relative confidence but doesn't consistently increase or decrease it. Understanding the performance of LLM is paramount in exploring its utility in sensitive areas like healthcare. This study contributes to the ongoing discourse on the reliability of AI, particularly of LLMs like GPT-4, within healthcare, offering insights into how feedback mechanisms might be optimized to enhance AI-assisted medical education and decision support.
Improving Language Models via Plug-and-Play Retrieval Feedback
Large language models (LLMs) exhibit remarkable performance across various NLP tasks. However, they often generate incorrect or hallucinated information, which hinders their practical applicability in real-world scenarios. Human feedback has been shown to effectively enhance the factuality and quality of generated content, addressing some of these limitations. However, this approach is resource-intensive, involving manual input and supervision, which can be time-consuming and expensive. Moreover, it cannot be provided during inference, further limiting its practical utility in dynamic and interactive applications. In this paper, we introduce ReFeed, a novel pipeline designed to enhance LLMs by providing automatic retrieval feedback in a plug-and-play framework without the need for expensive fine-tuning. ReFeed first generates initial outputs, then utilizes a retrieval model to acquire relevant information from large document collections, and finally incorporates the retrieved information into the in-context demonstration for output refinement, thereby addressing the limitations of LLMs in a more efficient and cost-effective manner. Experiments on four knowledge-intensive benchmark datasets demonstrate our proposed ReFeed could improve over +6.0% under zero-shot setting and +2.5% under few-shot setting, compared to baselines without using retrieval feedback.
Evaluating the role of `Constitutions' for learning from AI feedback
The growing capabilities of large language models (LLMs) have led to their use as substitutes for human feedback for training and assessing other LLMs. These methods often rely on `constitutions', written guidelines which a critic model uses to provide feedback and improve generations. We investigate how the choice of constitution affects feedback quality by using four different constitutions to improve patient-centered communication in medical interviews. In pairwise comparisons conducted by 215 human raters, we found that detailed constitutions led to better results regarding emotive qualities. However, none of the constitutions outperformed the baseline in learning more practically-oriented skills related to information gathering and provision. Our findings indicate that while detailed constitutions should be prioritised, there are possible limitations to the effectiveness of AI feedback as a reward signal in certain areas.
NExT-Search: Rebuilding User Feedback Ecosystem for Generative AI Search
Generative AI search is reshaping information retrieval by offering end-to-end answers to complex queries, reducing users' reliance on manually browsing and summarizing multiple web pages. However, while this paradigm enhances convenience, it disrupts the feedback-driven improvement loop that has historically powered the evolution of traditional Web search. Web search can continuously improve their ranking models by collecting large-scale, fine-grained user feedback (e.g., clicks, dwell time) at the document level. In contrast, generative AI search operates through a much longer search pipeline, spanning query decomposition, document retrieval, and answer generation, yet typically receives only coarse-grained feedback on the final answer. This introduces a feedback loop disconnect, where user feedback for the final output cannot be effectively mapped back to specific system components, making it difficult to improve each intermediate stage and sustain the feedback loop. In this paper, we envision NExT-Search, a next-generation paradigm designed to reintroduce fine-grained, process-level feedback into generative AI search. NExT-Search integrates two complementary modes: User Debug Mode, which allows engaged users to intervene at key stages; and Shadow User Mode, where a personalized user agent simulates user preferences and provides AI-assisted feedback for less interactive users. Furthermore, we envision how these feedback signals can be leveraged through online adaptation, which refines current search outputs in real-time, and offline update, which aggregates interaction logs to periodically fine-tune query decomposition, retrieval, and generation models. By restoring human control over key stages of the generative AI search pipeline, we believe NExT-Search offers a promising direction for building feedback-rich AI search systems that can evolve continuously alongside human feedback.
Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
AudienceView: AI-Assisted Interpretation of Audience Feedback in Journalism
Understanding and making use of audience feedback is important but difficult for journalists, who now face an impractically large volume of audience comments online. We introduce AudienceView, an online tool to help journalists categorize and interpret this feedback by leveraging large language models (LLMs). AudienceView identifies themes and topics, connects them back to specific comments, provides ways to visualize the sentiment and distribution of the comments, and helps users develop ideas for subsequent reporting projects. We consider how such tools can be useful in a journalist's workflow, and emphasize the importance of contextual awareness and human judgment.
Constructive Large Language Models Alignment with Diverse Feedback
In recent research on large language models (LLMs), there has been a growing emphasis on aligning these models with human values to reduce the impact of harmful content. However, current alignment methods often rely solely on singular forms of human feedback, such as preferences, annotated labels, or natural language critiques, overlooking the potential advantages of combining these feedback types. This limitation leads to suboptimal performance, even when ample training data is available. In this paper, we introduce Constructive and Diverse Feedback (CDF) as a novel method to enhance LLM alignment, inspired by constructivist learning theory. Our approach involves collecting three distinct types of feedback tailored to problems of varying difficulty levels within the training dataset. Specifically, we exploit critique feedback for easy problems, refinement feedback for medium problems, and preference feedback for hard problems. By training our model with this diversified feedback, we achieve enhanced alignment performance while using less training data. To assess the effectiveness of CDF, we evaluate it against previous methods in three downstream tasks: question answering, dialog generation, and text summarization. Experimental results demonstrate that CDF achieves superior performance even with a smaller training dataset.
I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
The Effect of Natural Distribution Shift on Question Answering Models
We build four new test sets for the Stanford Question Answering Dataset (SQuAD) and evaluate the ability of question-answering systems to generalize to new data. Our first test set is from the original Wikipedia domain and measures the extent to which existing systems overfit the original test set. Despite several years of heavy test set re-use, we find no evidence of adaptive overfitting. The remaining three test sets are constructed from New York Times articles, Reddit posts, and Amazon product reviews and measure robustness to natural distribution shifts. Across a broad range of models, we observe average performance drops of 3.8, 14.0, and 17.4 F1 points, respectively. In contrast, a strong human baseline matches or exceeds the performance of SQuAD models on the original domain and exhibits little to no drop in new domains. Taken together, our results confirm the surprising resilience of the holdout method and emphasize the need to move towards evaluation metrics that incorporate robustness to natural distribution shifts.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Predicting Code Coverage without Execution
Code coverage is a widely used metric for quantifying the extent to which program elements, such as statements or branches, are executed during testing. Calculating code coverage is resource-intensive, requiring code building and execution with additional overhead for the instrumentation. Furthermore, computing coverage of any snippet of code requires the whole program context. Using Machine Learning to amortize this expensive process could lower the cost of code coverage by requiring only the source code context, and the task of code coverage prediction can be a novel benchmark for judging the ability of models to understand code. We propose a novel benchmark task called Code Coverage Prediction for Large Language Models (LLMs). We formalize this task to evaluate the capability of LLMs in understanding code execution by determining which lines of a method are executed by a given test case and inputs. We curate and release a dataset we call COVERAGEEVAL by executing tests and code from the HumanEval dataset and collecting code coverage information. We report the performance of four state-of-the-art LLMs used for code-related tasks, including OpenAI's GPT-4 and GPT-3.5-Turbo, Google's BARD, and Anthropic's Claude, on the Code Coverage Prediction task. Finally, we argue that code coverage as a metric and pre-training data source are valuable for overall LLM performance on software engineering tasks.
ReviewRobot: Explainable Paper Review Generation based on Knowledge Synthesis
To assist human review process, we build a novel ReviewRobot to automatically assign a review score and write comments for multiple categories such as novelty and meaningful comparison. A good review needs to be knowledgeable, namely that the comments should be constructive and informative to help improve the paper; and explainable by providing detailed evidence. ReviewRobot achieves these goals via three steps: (1) We perform domain-specific Information Extraction to construct a knowledge graph (KG) from the target paper under review, a related work KG from the papers cited by the target paper, and a background KG from a large collection of previous papers in the domain. (2) By comparing these three KGs, we predict a review score and detailed structured knowledge as evidence for each review category. (3) We carefully select and generalize human review sentences into templates, and apply these templates to transform the review scores and evidence into natural language comments. Experimental results show that our review score predictor reaches 71.4%-100% accuracy. Human assessment by domain experts shows that 41.7%-70.5% of the comments generated by ReviewRobot are valid and constructive, and better than human-written ones for 20% of the time. Thus, ReviewRobot can serve as an assistant for paper reviewers, program chairs and authors.
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
SEAGraph: Unveiling the Whole Story of Paper Review Comments
Peer review, as a cornerstone of scientific research, ensures the integrity and quality of scholarly work by providing authors with objective feedback for refinement. However, in the traditional peer review process, authors often receive vague or insufficiently detailed feedback, which provides limited assistance and leads to a more time-consuming review cycle. If authors can identify some specific weaknesses in their paper, they can not only address the reviewer's concerns but also improve their work. This raises the critical question of how to enhance authors' comprehension of review comments. In this paper, we present SEAGraph, a novel framework developed to clarify review comments by uncovering the underlying intentions behind them. We construct two types of graphs for each paper: the semantic mind graph, which captures the author's thought process, and the hierarchical background graph, which delineates the research domains related to the paper. A retrieval method is then designed to extract relevant content from both graphs, facilitating coherent explanations for the review comments. Extensive experiments show that SEAGraph excels in review comment understanding tasks, offering significant benefits to authors.
Attention, Please! Revisiting Attentive Probing for Masked Image Modeling
As fine-tuning (FT) becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol for self-supervised learning (SSL). Yet, the standard linear probing (LP) fails to adequately reflect the potential of models trained with Masked Image Modeling (MIM), due to the distributed nature of patch tokens. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy-efficiency trade-off. We conduct a systematic study of existing methods, analyzing their mechanisms and benchmarking their performance. We introduce efficient probing (EP), a multi-query cross-attention mechanism that eliminates redundant projections, reduces the number of trainable parameters, and achieves up to a 10times speed-up over conventional multi-head attention. Despite its simplicity, EP outperforms LP and prior attentive probing approaches across seven benchmarks, generalizes well beyond MIM to diverse pre-training paradigms, produces interpretable attention maps, and achieves strong gains in low-shot and layer-wise settings. Code available at https://github.com/billpsomas/efficient-probing.
Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation
The predictions of question answering (QA)systems are typically evaluated against manually annotated finite sets of one or more answers. This leads to a coverage limitation that results in underestimating the true performance of systems, and is typically addressed by extending over exact match (EM) with pre-defined rules or with the token-level F1 measure. In this paper, we present the first systematic conceptual and data-driven analysis to examine the shortcomings of token-level equivalence measures. To this end, we define the asymmetric notion of answer equivalence (AE), accepting answers that are equivalent to or improve over the reference, and publish over 23k human judgments for candidates produced by multiple QA systems on SQuAD. Through a careful analysis of this data, we reveal and quantify several concrete limitations of the F1 measure, such as a false impression of graduality, or missing dependence on the question. Since collecting AE annotations for each evaluated model is expensive, we learn a BERT matching (BEM) measure to approximate this task. Being a simpler task than QA, we find BEM to provide significantly better AE approximations than F1, and to more accurately reflect the performance of systems. Finally, we demonstrate the practical utility of AE and BEM on the concrete application of minimal accurate prediction sets, reducing the number of required answers by up to x2.6.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as another axis for scaling by increasing the number of generated samples. Across multiple tasks and models, we observe that coverage - the fraction of problems solved by any attempt - scales with the number of samples over four orders of magnitude. In domains like coding and formal proofs, where all answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model with five samples is more cost-effective and solves more issues than paying a premium for one sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying correct samples out of many generations remains an important direction for future research in domains without automatic verifiers. When solving math word problems from GSM8K and MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common methods to pick correct solutions from a sample collection, such as majority voting or reward models, plateau beyond several hundred samples and fail to fully scale with the sample budget.
The Future of Open Human Feedback
Human feedback on conversations with language language models (LLMs) is central to how these systems learn about the world, improve their capabilities, and are steered toward desirable and safe behaviors. However, this feedback is mostly collected by frontier AI labs and kept behind closed doors. In this work, we bring together interdisciplinary experts to assess the opportunities and challenges to realizing an open ecosystem of human feedback for AI. We first look for successful practices in peer production, open source, and citizen science communities. We then characterize the main challenges for open human feedback. For each, we survey current approaches and offer recommendations. We end by envisioning the components needed to underpin a sustainable and open human feedback ecosystem. In the center of this ecosystem are mutually beneficial feedback loops, between users and specialized models, incentivizing a diverse stakeholders community of model trainers and feedback providers to support a general open feedback pool.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation
Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. Recent work has focused on using LLMs to improve review efficiency or generate insightful review content. However, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine the peer review ecosystem and compromise academic integrity. To address this critical issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews. ReviewGuard employs a comprehensive four-stage LLM-driven framework that: (1) collects ICLR and NeurIPS papers with their corresponding reviews from OpenReview; (2) annotates review types using GPT-4.1 with human validation; (3) addresses class imbalance and data scarcity through LLM-driven synthetic data augmentation, producing a final corpus of 6,634 papers, 24,657 real reviews, and 46,438 synthetic reviews; and (4) fine-tunes both encoder-based models and open source LLMs. We perform comprehensive feature analysis of the structure and quality of the review text. Compared to sufficient reviews, deficient reviews demonstrate lower rating scores, higher self-reported confidence, reduced structural complexity, and a higher proportion of negative sentiment. AI-generated text detection reveals that, since ChatGPT's emergence, AI-generated reviews have increased dramatically. In the evaluation of deficient review detection models, mixed training with synthetic and real review data provides substantial enhancements to recall and F1 scores on the binary task. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review while offering valuable insights into human-AI collaboration to maintain academic integrity.
Enhancing Large Language Model Performance To Answer Questions and Extract Information More Accurately
Large Language Models (LLMs) generate responses to questions; however, their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions. To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models. The objective is to enhance AI models through continuous feedback loops, utilizing metrics such as cosine similarity, LLM evaluation and Rouge-L scores to evaluate the models. Leveraging LLMs like GPT-3.5, GPT4ALL, and LLaMA2, and Claude, this approach is benchmarked on financial datasets, including the FinanceBench and RAG Instruct Benchmark Tester Dataset, illustrating the necessity of fine-tuning. The results showcase the capability of fine-tuned models to surpass the accuracy of zero-shot LLMs, providing superior question and answering capabilities. Notably, the combination of fine-tuning the LLM with a process known as Retrieval Augmented Generation (RAG) proves to generate responses with improved accuracy.
RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search for Code Generation
LLM agents enhanced by tree search algorithms have yielded notable performances in code generation. However, current search algorithms in this domain suffer from low search quality due to several reasons: 1) Ineffective design of the search space for the high-reasoning demands of code generation tasks, 2) Inadequate integration of code feedback with the search algorithm, and 3) Poor handling of negative feedback during the search, leading to reduced search efficiency and quality. To address these challenges, we propose to search for the reasoning process of the code and use the detailed feedback of code execution to refine erroneous thoughts during the search. In this paper, we introduce RethinkMCTS, which employs the Monte Carlo Tree Search (MCTS) algorithm to conduct thought-level searches before generating code, thereby exploring a wider range of strategies. More importantly, we construct verbal feedback from fine-grained code execution feedback to refine erroneous thoughts during the search. This ensures that the search progresses along the correct reasoning paths, thus improving the overall search quality of the tree by leveraging execution feedback. Through extensive experiments, we demonstrate that RethinkMCTS outperforms previous search-based and feedback-based code generation baselines. On the HumanEval dataset, it improves the pass@1 of GPT-3.5-turbo from 70.12 to 89.02 and GPT-4o-mini from 87.20 to 94.51. It effectively conducts more thorough exploration through thought-level searches and enhances the search quality of the entire tree by incorporating rethink operation.
Generating Quizzes to Support Training on Quality Management and Assurance in Space Science and Engineering
Quality management and assurance is key for space agencies to guarantee the success of space missions, which are high-risk and extremely costly. In this paper, we present a system to generate quizzes, a common resource to evaluate the effectiveness of training sessions, from documents about quality assurance procedures in the Space domain. Our system leverages state of the art auto-regressive models like T5 and BART to generate questions, and a RoBERTa model to extract answers for such questions, thus verifying their suitability.
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
GaRAGe: A Benchmark with Grounding Annotations for RAG Evaluation
We present GaRAGe, a large RAG benchmark with human-curated long-form answers and annotations of each grounding passage, allowing a fine-grained evaluation of whether LLMs can identify relevant grounding when generating RAG answers. Our benchmark contains 2366 questions of diverse complexity, dynamism, and topics, and includes over 35K annotated passages retrieved from both private document sets and the Web, to reflect real-world RAG use cases. This makes it an ideal test bed to evaluate an LLM's ability to identify only the relevant information necessary to compose a response, or provide a deflective response when there is insufficient information. Evaluations of multiple state-of-the-art LLMs on GaRAGe show that the models tend to over-summarise rather than (a) ground their answers strictly on the annotated relevant passages (reaching at most a Relevance-Aware Factuality Score of 60%), or (b) deflect when no relevant grounding is available (reaching at most 31% true positive rate in deflections). The F1 in attribution to relevant sources is at most 58.9%, and we show that performance is particularly reduced when answering time-sensitive questions and when having to draw knowledge from sparser private grounding sources.
Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback
Code editing is an essential step towards reliable program synthesis to automatically correct critical errors generated from code LLMs. Recent studies have demonstrated that closed-source LLMs (i.e., ChatGPT and GPT-4) are capable of generating corrective feedback to edit erroneous inputs. However, it remains challenging for open-source code LLMs to generate feedback for code editing, since these models tend to adhere to the superficial formats of feedback and provide feedback with misleading information. Hence, the focus of our work is to leverage open-source code LLMs to generate helpful feedback with correct guidance for code editing. To this end, we present Coffee, a collected dataset specifically designed for code fixing with feedback. Using this dataset, we construct CoffeePots, a framework for COde Fixing with FEEdback via Preference-Optimized Tuning and Selection. The proposed framework aims to automatically generate helpful feedback for code editing while minimizing the potential risk of superficial feedback. The combination of Coffee and CoffeePots marks a significant advancement, achieving state-of-the-art performance on HumanEvalFix benchmark. Codes and model checkpoints are publicly available at https://github.com/Lune-Blue/COFFEE.
ReviewRL: Towards Automated Scientific Review with RL
Peer review is essential for scientific progress but faces growing challenges due to increasing submission volumes and reviewer fatigue. Existing automated review approaches struggle with factual accuracy, rating consistency, and analytical depth, often generating superficial or generic feedback lacking the insights characteristic of high-quality human reviews. We introduce ReviewRL, a reinforcement learning framework for generating comprehensive and factually grounded scientific paper reviews. Our approach combines: (1) an ArXiv-MCP retrieval-augmented context generation pipeline that incorporates relevant scientific literature, (2) supervised fine-tuning that establishes foundational reviewing capabilities, and (3) a reinforcement learning procedure with a composite reward function that jointly enhances review quality and rating accuracy. Experiments on ICLR 2025 papers demonstrate that ReviewRL significantly outperforms existing methods across both rule-based metrics and model-based quality assessments. ReviewRL establishes a foundational framework for RL-driven automatic critique generation in scientific discovery, demonstrating promising potential for future development in this domain. The implementation of ReviewRL will be released at GitHub.
Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers
The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.
What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception
Eliciting feedback from end users of NLP models can be beneficial for improving models. However, how should we present model responses to users so they are most amenable to be corrected from user feedback? Further, what properties do users value to understand and trust responses? We answer these questions by analyzing the effect of rationales (or explanations) generated by QA models to support their answers. We specifically consider decomposed QA models that first extract an intermediate rationale based on a context and a question and then use solely this rationale to answer the question. A rationale outlines the approach followed by the model to answer the question. Our work considers various formats of these rationales that vary according to well-defined properties of interest. We sample rationales from language models using few-shot prompting for two datasets, and then perform two user studies. First, we present users with incorrect answers and corresponding rationales in various formats and ask them to provide natural language feedback to revise the rationale. We then measure the effectiveness of this feedback in patching these rationales through in-context learning. The second study evaluates how well different rationale formats enable users to understand and trust model answers, when they are correct. We find that rationale formats significantly affect how easy it is (1) for users to give feedback for rationales, and (2) for models to subsequently execute this feedback. In addition, formats with attributions to the context and in-depth reasoning significantly enhance user-reported understanding and trust of model outputs.
Beyond Sample-Level Feedback: Using Reference-Level Feedback to Guide Data Synthesis
LLMs demonstrate remarkable capabilities in following natural language instructions, largely due to instruction-tuning on high-quality datasets. While synthetic data generation has emerged as a scalable approach for creating such datasets, maintaining consistent quality standards remains challenging. Recent approaches incorporate feedback to improve data quality, but typically operate at the sample level, generating and applying feedback for each response individually. In this work, we propose Reference-Level Feedback, a novel methodology that instead collects feedback based on high-quality reference samples from carefully curated seed data. We use this feedback to capture rich signals of desirable characteristics and propagate it throughout the data synthesis process. We present REFED, a dataset of 10K instruction-response pairs synthesized using such feedback. We demonstrate the effectiveness of our approach by showing that Llama-3.1-8B-Instruct finetuned on REFED achieves state-of-the-art performance among similar-sized SFT-based models on AlpacaEval 2.0 and strong results on Arena-Hard. Through extensive experiments, we show that our approach consistently outperforms traditional sample-level feedback methods with significantly fewer feedback collections and improves performance across different model architectures.
Automating Code Review Activities by Large-Scale Pre-training
Code review is an essential part to software development lifecycle since it aims at guaranteeing the quality of codes. Modern code review activities necessitate developers viewing, understanding and even running the programs to assess logic, functionality, latency, style and other factors. It turns out that developers have to spend far too much time reviewing the code of their peers. Accordingly, it is in significant demand to automate the code review process. In this research, we focus on utilizing pre-training techniques for the tasks in the code review scenario. We collect a large-scale dataset of real-world code changes and code reviews from open-source projects in nine of the most popular programming languages. To better understand code diffs and reviews, we propose CodeReviewer, a pre-trained model that utilizes four pre-training tasks tailored specifically for the code review scenario. To evaluate our model, we focus on three key tasks related to code review activities, including code change quality estimation, review comment generation and code refinement. Furthermore, we establish a high-quality benchmark dataset based on our collected data for these three tasks and conduct comprehensive experiments on it. The experimental results demonstrate that our model outperforms the previous state-of-the-art pre-training approaches in all tasks. Further analysis show that our proposed pre-training tasks and the multilingual pre-training dataset benefit the model on the understanding of code changes and reviews.
LLM-Collaboration on Automatic Science Journalism for the General Audience
Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. However, this task can be challenging as the audience often lacks specific knowledge about the presented research. To address this challenge, we propose a framework that integrates three LLMs mimicking the real-world writing-reading-feedback-revision workflow, with one LLM acting as the journalist, a smaller LLM as the general public reader, and the third LLM as an editor. The journalist's writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including advanced models such as GPT-4.
"I understand why I got this grade": Automatic Short Answer Grading with Feedback
The demand for efficient and accurate assessment methods has intensified as education systems transition to digital platforms. Providing feedback is essential in educational settings and goes beyond simply conveying marks as it justifies the assigned marks. In this context, we present a significant advancement in automated grading by introducing Engineering Short Answer Feedback (EngSAF) -- a dataset of 5.8k student answers accompanied by reference answers and questions for the Automatic Short Answer Grading (ASAG) task. The EngSAF dataset is meticulously curated to cover a diverse range of subjects, questions, and answer patterns from multiple engineering domains. We leverage state-of-the-art large language models' (LLMs) generative capabilities with our Label-Aware Synthetic Feedback Generation (LASFG) strategy to include feedback in our dataset. This paper underscores the importance of enhanced feedback in practical educational settings, outlines dataset annotation and feedback generation processes, conducts a thorough EngSAF analysis, and provides different LLMs-based zero-shot and finetuned baselines for future comparison. Additionally, we demonstrate the efficiency and effectiveness of the ASAG system through its deployment in a real-world end-semester exam at the Indian Institute of Technology Bombay (IITB), showcasing its practical viability and potential for broader implementation in educational institutions.
Question answering systems for health professionals at the point of care -- a systematic review
Objective: Question answering (QA) systems have the potential to improve the quality of clinical care by providing health professionals with the latest and most relevant evidence. However, QA systems have not been widely adopted. This systematic review aims to characterize current medical QA systems, assess their suitability for healthcare, and identify areas of improvement. Materials and methods: We searched PubMed, IEEE Xplore, ACM Digital Library, ACL Anthology and forward and backward citations on 7th February 2023. We included peer-reviewed journal and conference papers describing the design and evaluation of biomedical QA systems. Two reviewers screened titles, abstracts, and full-text articles. We conducted a narrative synthesis and risk of bias assessment for each study. We assessed the utility of biomedical QA systems. Results: We included 79 studies and identified themes, including question realism, answer reliability, answer utility, clinical specialism, systems, usability, and evaluation methods. Clinicians' questions used to train and evaluate QA systems were restricted to certain sources, types and complexity levels. No system communicated confidence levels in the answers or sources. Many studies suffered from high risks of bias and applicability concerns. Only 8 studies completely satisfied any criterion for clinical utility, and only 7 reported user evaluations. Most systems were built with limited input from clinicians. Discussion: While machine learning methods have led to increased accuracy, most studies imperfectly reflected real-world healthcare information needs. Key research priorities include developing more realistic healthcare QA datasets and considering the reliability of answer sources, rather than merely focusing on accuracy.
Training Language Models to Critique With Multi-agent Feedback
Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often limited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST^{EM}, where we (1) generate samples from the model and filter them using binary feedback, (2) fine-tune the model on these samples, and (3) repeat this process a few times. Testing on advanced MATH reasoning and APPS coding benchmarks using PaLM-2 models, we find that ReST^{EM} scales favorably with model size and significantly surpasses fine-tuning only on human data. Overall, our findings suggest self-training with feedback can substantially reduce dependence on human-generated data.
QueryExplorer: An Interactive Query Generation Assistant for Search and Exploration
Formulating effective search queries remains a challenging task, particularly when users lack expertise in a specific domain or are not proficient in the language of the content. Providing example documents of interest might be easier for a user. However, such query-by-example scenarios are prone to concept drift, and the retrieval effectiveness is highly sensitive to the query generation method, without a clear way to incorporate user feedback. To enable exploration and to support Human-In-The-Loop experiments we propose QueryExplorer -- an interactive query generation, reformulation, and retrieval interface with support for HuggingFace generation models and PyTerrier's retrieval pipelines and datasets, and extensive logging of human feedback. To allow users to create and modify effective queries, our demo supports complementary approaches of using LLMs interactively, assisting the user with edits and feedback at multiple stages of the query formulation process. With support for recording fine-grained interactions and user annotations, QueryExplorer can serve as a valuable experimental and research platform for annotation, qualitative evaluation, and conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries.
SurveyBench: How Well Can LLM(-Agents) Write Academic Surveys?
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).
Rethinking the Influence of Source Code on Test Case Generation
Large language models (LLMs) have been widely applied to assist test generation with the source code under test provided as the context. This paper aims to answer the question: If the source code under test is incorrect, will LLMs be misguided when generating tests? The effectiveness of test cases is measured by their accuracy, coverage, and bug detection effectiveness. Our evaluation results with five open- and six closed-source LLMs on four datasets demonstrate that incorrect code can significantly mislead LLMs in generating correct, high-coverage, and bug-revealing tests. For instance, in the HumanEval dataset, LLMs achieve 80.45% test accuracy when provided with task descriptions and correct code, but only 57.12% when given task descriptions and incorrect code. For the APPS dataset, prompts with correct code yield tests that detect 39.85% of the bugs, while prompts with incorrect code detect only 19.61%. These findings have important implications for the deployment of LLM-based testing: using it on mature code may help protect against future regression, but on early-stage immature code, it may simply bake in errors. Our findings also underscore the need for further research to improve LLMs resilience against incorrect code in generating reliable and bug-revealing tests.
AutoRev: Automatic Peer Review System for Academic Research Papers
Generating a review for an academic research paper is a complex task that requires a deep understanding of the document's content and the interdependencies between its sections. It demands not only insight into technical details but also an appreciation of the paper's overall coherence and structure. Recent methods have predominantly focused on fine-tuning large language models (LLMs) to address this challenge. However, they often overlook the computational and performance limitations imposed by long input token lengths. To address this, we introduce AutoRev, an Automatic Peer Review System for Academic Research Papers. Our novel framework represents an academic document as a graph, enabling the extraction of the most critical passages that contribute significantly to the review. This graph-based approach demonstrates effectiveness for review generation and is potentially adaptable to various downstream tasks, such as question answering, summarization, and document representation. When applied to review generation, our method outperforms SOTA baselines by an average of 58.72% across all evaluation metrics. We hope that our work will stimulate further research in applying graph-based extraction techniques to other downstream tasks in NLP. We plan to make our code public upon acceptance.
LoL: A Comparative Regularization Loss over Query Reformulation Losses for Pseudo-Relevance Feedback
Pseudo-relevance feedback (PRF) has proven to be an effective query reformulation technique to improve retrieval accuracy. It aims to alleviate the mismatch of linguistic expressions between a query and its potential relevant documents. Existing PRF methods independently treat revised queries originating from the same query but using different numbers of feedback documents, resulting in severe query drift. Without comparing the effects of two different revisions from the same query, a PRF model may incorrectly focus on the additional irrelevant information increased in the more feedback, and thus reformulate a query that is less effective than the revision using the less feedback. Ideally, if a PRF model can distinguish between irrelevant and relevant information in the feedback, the more feedback documents there are, the better the revised query will be. To bridge this gap, we propose the Loss-over-Loss (LoL) framework to compare the reformulation losses between different revisions of the same query during training. Concretely, we revise an original query multiple times in parallel using different amounts of feedback and compute their reformulation losses. Then, we introduce an additional regularization loss on these reformulation losses to penalize revisions that use more feedback but gain larger losses. With such comparative regularization, the PRF model is expected to learn to suppress the extra increased irrelevant information by comparing the effects of different revised queries. Further, we present a differentiable query reformulation method to implement this framework. This method revises queries in the vector space and directly optimizes the retrieval performance of query vectors, applicable for both sparse and dense retrieval models. Empirical evaluation demonstrates the effectiveness and robustness of our method for two typical sparse and dense retrieval models.
Curiosity-driven Red-teaming for Large Language Models
Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a red team of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at https://github.com/Improbable-AI/curiosity_redteam
Automatic Evaluation of Attribution by Large Language Models
A recent focus of large language model (LLM) development, as exemplified by generative search engines, is to incorporate external references to generate and support their claims. However, evaluating the attribution, i.e., verifying whether the generated statement is indeed fully supported by the cited reference, remains an open problem. Although human evaluation is common practice, it is costly and time-consuming. In this paper, we investigate the automatic evaluation of attribution by LLMs. We begin by providing a definition of attribution and then explore two approaches for automatic evaluation: prompting LLMs and fine-tuning smaller LMs. The fine-tuning data is repurposed from related tasks, such as question answering, fact-checking, natural language inference, and summarization. To facilitate the evaluation, we manually curate a set of test examples covering 12 domains from a generative search engine, New Bing. Our results on the curated test set and simulated test examples from existing benchmark questions highlight both promising signals as well as remaining challenges for the automatic evaluation of attribution. We hope our testbed, modeling methodology, and insights will help lay the foundation for future studies on this important problem.
Beyond Factual Accuracy: Evaluating Coverage of Diverse Factual Information in Long-form Text Generation
This paper presents ICAT, an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs.
Surveying (Dis)Parities and Concerns of Compute Hungry NLP Research
Many recent improvements in NLP stem from the development and use of large pre-trained language models (PLMs) with billions of parameters. Large model sizes makes computational cost one of the main limiting factors for training and evaluating such models; and has raised severe concerns about the sustainability, reproducibility, and inclusiveness for researching PLMs. These concerns are often based on personal experiences and observations. However, there had not been any large-scale surveys that investigate them. In this work, we provide a first attempt to quantify these concerns regarding three topics, namely, environmental impact, equity, and impact on peer reviewing. By conducting a survey with 312 participants from the NLP community, we capture existing (dis)parities between different and within groups with respect to seniority, academia, and industry; and their impact on the peer reviewing process. For each topic, we provide an analysis and devise recommendations to mitigate found disparities, some of which already successfully implemented. Finally, we discuss additional concerns raised by many participants in free-text responses.
ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews
Revising scientific papers based on peer feedback is a challenging task that requires not only deep scientific knowledge and reasoning, but also the ability to recognize the implicit requests in high-level feedback and to choose the best of many possible ways to update the manuscript in response. We introduce this task for large language models and release ARIES, a dataset of review comments and their corresponding paper edits, to enable training and evaluating models. We study two versions of the task: comment-edit alignment and edit generation, and evaluate several baselines, including GPT-4. We find that models struggle even to identify the edits that correspond to a comment, especially in cases where the comment is phrased in an indirect way or where the edit addresses the spirit of a comment but not the precise request. When tasked with generating edits, GPT-4 often succeeds in addressing comments on a surface level, but it rigidly follows the wording of the feedback rather than the underlying intent, and includes fewer technical details than human-written edits. We hope that our formalization, dataset, and analysis will form a foundation for future work in this area.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
TWEETQA: A Social Media Focused Question Answering Dataset
With social media becoming increasingly pop-ular on which lots of news and real-time eventsare reported, developing automated questionanswering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets haveconcentrated on question answering (QA) forformal text like news and Wikipedia, wepresent the first large-scale dataset for QA oversocial media data. To ensure that the tweetswe collected are useful, we only gather tweetsused by journalists to write news articles. Wethen ask human annotators to write questionsand answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answersare extractive, we allow the answers to be ab-stractive. We show that two recently proposedneural models that perform well on formaltexts are limited in their performance when ap-plied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind hu-man performance with a large margin. Our re-sults thus point to the need of improved QAsystems targeting social media text.
Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond
This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.
Do Answers to Boolean Questions Need Explanations? Yes
Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence.
Teaching Language Models to Critique via Reinforcement Learning
Teaching large language models (LLMs) to critique and refine their outputs is crucial for building systems that can iteratively improve, yet it is fundamentally limited by the ability to provide accurate judgments and actionable suggestions. In this work, we study LLM critics for code generation and propose CTRL, a framework for Critic Training via Reinforcement Learning, which trains a critic model to generate feedback that maximizes correction performance for a fixed generator model without human supervision. Our results demonstrate that critics trained with CTRL significantly enhance pass rates and mitigate compounding errors across both base and stronger generator models. Furthermore, we show that these critic models act as accurate generative reward models and enable test-time scaling through iterative critique-revision, achieving up to 106.1% relative improvements across challenging code generation benchmarks.
OpinioRAG: Towards Generating User-Centric Opinion Highlights from Large-scale Online Reviews
We study the problem of opinion highlights generation from large volumes of user reviews, often exceeding thousands per entity, where existing methods either fail to scale or produce generic, one-size-fits-all summaries that overlook personalized needs. To tackle this, we introduce OpinioRAG, a scalable, training-free framework that combines RAG-based evidence retrieval with LLMs to efficiently produce tailored summaries. Additionally, we propose novel reference-free verification metrics designed for sentiment-rich domains, where accurately capturing opinions and sentiment alignment is essential. These metrics offer a fine-grained, context-sensitive assessment of factual consistency. To facilitate evaluation, we contribute the first large-scale dataset of long-form user reviews, comprising entities with over a thousand reviews each, paired with unbiased expert summaries and manually annotated queries. Through extensive experiments, we identify key challenges, provide actionable insights into improving systems, pave the way for future research, and position OpinioRAG as a robust framework for generating accurate, relevant, and structured summaries at scale.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Embracing data abundance: BookTest Dataset for Reading Comprehension
There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement.
Demystifying GPT Self-Repair for Code Generation
Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.
Generative Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback
Query Reformulation (QR) is a set of techniques used to transform a user's original search query to a text that better aligns with the user's intent and improves their search experience. Recently, zero-shot QR has been a promising approach due to its ability to exploit knowledge inherent in large language models. Inspired by the success of ensemble prompting strategies which have benefited other tasks, we investigate if they can improve query reformulation. In this context, we propose two ensemble-based prompting techniques, GenQREnsemble and GenQRFusion which leverage paraphrases of a zero-shot instruction to generate multiple sets of keywords to improve retrieval performance ultimately. We further introduce their post-retrieval variants to incorporate relevance feedback from a variety of sources, including an oracle simulating a human user and a "critic" LLM. We demonstrate that an ensemble of query reformulations can improve retrieval effectiveness by up to 18% on nDCG@10 in pre-retrieval settings and 9% on post-retrieval settings on multiple benchmarks, outperforming all previously reported SOTA results. We perform subsequent analyses to investigate the effects of feedback documents, incorporate domain-specific instructions, filter reformulations, and generate fluent reformulations that might be more beneficial to human searchers. Together, the techniques and the results presented in this paper establish a new state of the art in automated query reformulation for retrieval and suggest promising directions for future research.
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
FeedbackLogs: Recording and Incorporating Stakeholder Feedback into Machine Learning Pipelines
Even though machine learning (ML) pipelines affect an increasing array of stakeholders, there is little work on how input from stakeholders is recorded and incorporated. We propose FeedbackLogs, addenda to existing documentation of ML pipelines, to track the input of multiple stakeholders. Each log records important details about the feedback collection process, the feedback itself, and how the feedback is used to update the ML pipeline. In this paper, we introduce and formalise a process for collecting a FeedbackLog. We also provide concrete use cases where FeedbackLogs can be employed as evidence for algorithmic auditing and as a tool to record updates based on stakeholder feedback.
Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
How to Train Data-Efficient LLMs
The training of large language models (LLMs) is expensive. In this paper, we study data-efficient approaches for pre-training LLMs, i.e., techniques that aim to optimize the Pareto frontier of model quality and training resource/data consumption. We seek to understand the tradeoffs associated with data selection routines based on (i) expensive-to-compute data-quality estimates, and (ii) maximization of coverage and diversity-based measures in the feature space. Our first technique, Ask-LLM, leverages the zero-shot reasoning capabilities of instruction-tuned LLMs to directly assess the quality of a training example. To target coverage, we propose Density sampling, which models the data distribution to select a diverse sample. In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories. Coverage sampling can recover the performance of the full data, while models trained on Ask-LLM data consistently outperform full-data training -- even when we reject 90% of the original dataset, while converging up to 70% faster.
Language Models Can Learn from Verbal Feedback Without Scalar Rewards
LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy.
Rich Human Feedback for Text-to-Image Generation
Recent Text-to-Image (T2I) generation models such as Stable Diffusion and Imagen have made significant progress in generating high-resolution images based on text descriptions. However, many generated images still suffer from issues such as artifacts/implausibility, misalignment with text descriptions, and low aesthetic quality. Inspired by the success of Reinforcement Learning with Human Feedback (RLHF) for large language models, prior works collected human-provided scores as feedback on generated images and trained a reward model to improve the T2I generation. In this paper, we enrich the feedback signal by (i) marking image regions that are implausible or misaligned with the text, and (ii) annotating which words in the text prompt are misrepresented or missing on the image. We collect such rich human feedback on 18K generated images and train a multimodal transformer to predict the rich feedback automatically. We show that the predicted rich human feedback can be leveraged to improve image generation, for example, by selecting high-quality training data to finetune and improve the generative models, or by creating masks with predicted heatmaps to inpaint the problematic regions. Notably, the improvements generalize to models (Muse) beyond those used to generate the images on which human feedback data were collected (Stable Diffusion variants).
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
ConstitutionMaker: Interactively Critiquing Large Language Models by Converting Feedback into Principles
Large language model (LLM) prompting is a promising new approach for users to create and customize their own chatbots. However, current methods for steering a chatbot's outputs, such as prompt engineering and fine-tuning, do not support users in converting their natural feedback on the model's outputs to changes in the prompt or model. In this work, we explore how to enable users to interactively refine model outputs through their feedback, by helping them convert their feedback into a set of principles (i.e. a constitution) that dictate the model's behavior. From a formative study, we (1) found that users needed support converting their feedback into principles for the chatbot and (2) classified the different principle types desired by users. Inspired by these findings, we developed ConstitutionMaker, an interactive tool for converting user feedback into principles, to steer LLM-based chatbots. With ConstitutionMaker, users can provide either positive or negative feedback in natural language, select auto-generated feedback, or rewrite the chatbot's response; each mode of feedback automatically generates a principle that is inserted into the chatbot's prompt. In a user study with 14 participants, we compare ConstitutionMaker to an ablated version, where users write their own principles. With ConstitutionMaker, participants felt that their principles could better guide the chatbot, that they could more easily convert their feedback into principles, and that they could write principles more efficiently, with less mental demand. ConstitutionMaker helped users identify ways to improve the chatbot, formulate their intuitive responses to the model into feedback, and convert this feedback into specific and clear principles. Together, these findings inform future tools that support the interactive critiquing of LLM outputs.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
WIQA: A dataset for "What if..." reasoning over procedural text
We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of "What if...?" multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length. Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms. Spurious correlations in the training data can lead models to incorrectly rely on parts of the input other than the control code for attribute selection, significantly undermining downstream generation quality and controllability. We demonstrate the severity of this issue with a series of case studies and then propose two simple techniques to reduce these correlations in training sets. The first technique is based on resampling the data according to an example's propensity towards each linguistic attribute (IPS). The second produces multiple counterfactual versions of each example and then uses an additional feedback mechanism to remove noisy examples (feedback aware self-training, FAST). We evaluate on 3 tasks -- news headline, meta review, and search ads generation -- and demonstrate that FAST can significantly improve the controllability and language quality of generated outputs when compared to state-of-the-art controllable text generation approaches.
Fine-grained Hallucination Detection and Mitigation in Long-form Question Answering
Long-form question answering (LFQA) aims to provide thorough and in-depth answers to complex questions, enhancing comprehension. However, such detailed responses are prone to hallucinations and factual inconsistencies, challenging their faithful evaluation. This work introduces HaluQuestQA, the first hallucination dataset with localized error annotations for human-written and model-generated LFQA answers. HaluQuestQA comprises 698 QA pairs with 4.7k span-level error annotations for five different error types by expert annotators, along with preference judgments. Using our collected data, we thoroughly analyze the shortcomings of long-form answers and find that they lack comprehensiveness and provide unhelpful references. We train an automatic feedback model on this dataset that predicts error spans with incomplete information and provides associated explanations. Finally, we propose a prompt-based approach, Error-informed refinement, that uses signals from the learned feedback model to refine generated answers, which we show reduces hallucination and improves answer quality. Furthermore, humans find answers generated by our approach comprehensive and highly prefer them (84%) over the baseline answers.
Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation
Generating accurate code review comments remains a significant challenge due to the inherently diverse and non-unique nature of the task output. Large language models pretrained on both programming and natural language data tend to perform well in code-oriented tasks. However, large-scale pretraining is not always feasible due to its environmental impact and project-specific generalizability issues. In this work, first we fine-tune open-source Large language models (LLM) in parameter-efficient, quantized low-rank (QLoRA) fashion on consumer-grade hardware to improve review comment generation. Recent studies demonstrate the efficacy of augmenting semantic metadata information into prompts to boost performance in other code-related tasks. To explore this in code review activities, we also prompt proprietary, closed-source LLMs augmenting the input code patch with function call graphs and code summaries. Both of our strategies improve the review comment generation performance, with function call graph augmented few-shot prompting on the GPT-3.5 model surpassing the pretrained baseline by around 90% BLEU-4 score on the CodeReviewer dataset. Moreover, few-shot prompted Gemini-1.0 Pro, QLoRA fine-tuned Code Llama and Llama 3.1 models achieve competitive results (ranging from 25% to 83% performance improvement) on this task. An additional human evaluation study further validates our experimental findings, reflecting real-world developers' perceptions of LLM-generated code review comments based on relevant qualitative metrics.
CritiqueLLM: Scaling LLM-as-Critic for Effective and Explainable Evaluation of Large Language Model Generation
Since the natural language processing (NLP) community started to make large language models (LLMs), such as GPT-4, act as a critic to evaluate the quality of generated texts, most of them only train a critique generation model of a specific scale on specific datasets. We argue that a comprehensive investigation on the key factor of LLM-based evaluation models, such as scaling properties, is lacking, so that it is still inconclusive whether these models have potential to replace GPT-4's evaluation in practical scenarios. In this paper, we propose a new critique generation model called CritiqueLLM, which includes a dialogue-based prompting method for high-quality referenced / reference-free evaluation data. Experimental results show that our model can achieve comparable evaluation performance to GPT-4 especially in system-level correlations, and even outperform GPT-4 in 3 out of 8 tasks in a challenging reference-free setting. We conduct detailed analysis to show promising scaling properties of our model in the quality of generated critiques. We also demonstrate that our generated critiques can act as scalable feedback to directly improve the generation quality of LLMs.
ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing
Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals.
Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When and Why Does It Work?
While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.
ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics
Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is widespread: survey articles synthesize knowledge distributed across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Each rubric, derived jointly with queries from survey sections, lists query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. Assessments by 31 Ph.D. annotators in 8 fields indicate 96% of queries support Ph.D. information needs and 87% of rubric items should be addressed in system responses by a sentence or more. Using our rubrics, we are able to construct an automatic pairwise judge obtaining 74% agreement with expert judgments. We leverage ResearchQA to analyze competency gaps in 18 systems in over 7.6K pairwise evaluations. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking agentic system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
TestGenEval: A Real World Unit Test Generation and Test Completion Benchmark
Code generation models can help improve many common software tasks ranging from code completion to defect prediction. Most of the existing benchmarks for code generation LLMs focus on code authoring or code completion. Surprisingly, there has been far less effort dedicated to benchmarking software testing, despite the strong correlation between well-tested software and effective bug detection. To address this gap, we create and release TestGenEval, a large-scale benchmark to measure test generation performance. Based on SWEBench, TestGenEval comprises 68,647 tests from 1,210 code and test file pairs across 11 well-maintained Python repositories. It covers initial tests authoring, test suite completion, and code coverage improvements. Test authoring simulates the process of a developer writing a test suite from scratch, while test completion mimics the scenario where a developer aims to improve the coverage of an existing test suite. We evaluate several popular models, with sizes ranging from 7B to 405B parameters. Our detailed analysis highlights TestGenEval's contribution to a comprehensive evaluation of test generation performance. In particular, models struggle to generate high-coverage test suites, with the best model, GPT-4o, achieving an average coverage of only 35.2%. This is primarily due to models struggling to reason about execution, and their frequent assertion errors when addressing complex code paths.
