new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection

Autonomous driving faces great safety challenges for a lack of global perspective and the limitation of long-range perception capabilities. It has been widely agreed that vehicle-infrastructure cooperation is required to achieve Level 5 autonomy. However, there is still NO dataset from real scenarios available for computer vision researchers to work on vehicle-infrastructure cooperation-related problems. To accelerate computer vision research and innovation for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release DAIR-V2X Dataset, which is the first large-scale, multi-modality, multi-view dataset from real scenarios for VICAD. DAIR-V2X comprises 71254 LiDAR frames and 71254 Camera frames, and all frames are captured from real scenes with 3D annotations. The Vehicle-Infrastructure Cooperative 3D Object Detection problem (VIC3D) is introduced, formulating the problem of collaboratively locating and identifying 3D objects using sensory inputs from both vehicle and infrastructure. In addition to solving traditional 3D object detection problems, the solution of VIC3D needs to consider the temporal asynchrony problem between vehicle and infrastructure sensors and the data transmission cost between them. Furthermore, we propose Time Compensation Late Fusion (TCLF), a late fusion framework for the VIC3D task as a benchmark based on DAIR-V2X. Find data, code, and more up-to-date information at https://thudair.baai.ac.cn/index and https://github.com/AIR-THU/DAIR-V2X.

  • 11 authors
·
Apr 12, 2022

CRA5: Extreme Compression of ERA5 for Portable Global Climate and Weather Research via an Efficient Variational Transformer

The advent of data-driven weather forecasting models, which learn from hundreds of terabytes (TB) of reanalysis data, has significantly advanced forecasting capabilities. However, the substantial costs associated with data storage and transmission present a major challenge for data providers and users, affecting resource-constrained researchers and limiting their accessibility to participate in AI-based meteorological research. To mitigate this issue, we introduce an efficient neural codec, the Variational Autoencoder Transformer (VAEformer), for extreme compression of climate data to significantly reduce data storage cost, making AI-based meteorological research portable to researchers. Our approach diverges from recent complex neural codecs by utilizing a low-complexity Auto-Encoder transformer. This encoder produces a quantized latent representation through variance inference, which reparameterizes the latent space as a Gaussian distribution. This method improves the estimation of distributions for cross-entropy coding. Extensive experiments demonstrate that our VAEformer outperforms existing state-of-the-art compression methods in the context of climate data. By applying our VAEformer, we compressed the most popular ERA5 climate dataset (226 TB) into a new dataset, CRA5 (0.7 TB). This translates to a compression ratio of over 300 while retaining the dataset's utility for accurate scientific analysis. Further, downstream experiments show that global weather forecasting models trained on the compact CRA5 dataset achieve forecasting accuracy comparable to the model trained on the original dataset. Code, the CRA5 dataset, and the pre-trained model are available at https://github.com/taohan10200/CRA5.

  • 5 authors
·
May 6, 2024

InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference

The widespread of Large Language Models (LLMs) marks a significant milestone in generative AI. Nevertheless, the increasing context length and batch size in offline LLM inference escalate the memory requirement of the key-value (KV) cache, which imposes a huge burden on the GPU VRAM, especially for resource-constraint scenarios (e.g., edge computing and personal devices). Several cost-effective solutions leverage host memory or SSDs to reduce storage costs for offline inference scenarios and improve the throughput. Nevertheless, they suffer from significant performance penalties imposed by intensive KV cache accesses due to limited PCIe bandwidth. To address these issues, we propose InstInfer, a novel LLM inference system that offloads the most performance-critical computation (i.e., attention in decoding phase) and data (i.e., KV cache) parts to Computational Storage Drives (CSDs), which minimize the enormous KV transfer overheads. InstInfer designs a dedicated flash-aware in-storage attention engine with KV cache management mechanisms to exploit the high internal bandwidths of CSDs instead of being limited by the PCIe bandwidth. The optimized P2P transmission between GPU and CSDs further reduces data migration overheads. Experimental results demonstrate that for a 13B model using an NVIDIA A6000 GPU, InstInfer improves throughput for long-sequence inference by up to 11.1times, compared to existing SSD-based solutions such as FlexGen.

  • 9 authors
·
Sep 8, 2024 2

FEDZIP: A Compression Framework for Communication-Efficient Federated Learning

Federated Learning marks a turning point in the implementation of decentralized machine learning (especially deep learning) for wireless devices by protecting users' privacy and safeguarding raw data from third-party access. It assigns the learning process independently to each client. First, clients locally train a machine learning model based on local data. Next, clients transfer local updates of model weights and biases (training data) to a server. Then, the server aggregates updates (received from clients) to create a global learning model. However, the continuous transfer between clients and the server increases communication costs and is inefficient from a resource utilization perspective due to the large number of parameters (weights and biases) used by deep learning models. The cost of communication becomes a greater concern when the number of contributing clients and communication rounds increases. In this work, we propose a novel framework, FedZip, that significantly decreases the size of updates while transferring weights from the deep learning model between clients and their servers. FedZip implements Top-z sparsification, uses quantization with clustering, and implements compression with three different encoding methods. FedZip outperforms state-of-the-art compression frameworks and reaches compression rates up to 1085x, and preserves up to 99% of bandwidth and 99% of energy for clients during communication.

  • 6 authors
·
Feb 2, 2021

Federated Learning over 5G, WiFi, and Ethernet: Measurements and Evaluation

Federated Learning (FL) deployments using IoT devices is an area that is poised to significantly benefit from advances in NextG wireless. In this paper, we deploy a FL application using a 5G-NR Standalone (SA) testbed with open-source and Commercial Off-the-Shelf (COTS) components. The 5G testbed architecture consists of a network of resource-constrained edge devices, namely Raspberry Pi's, and a central server equipped with a Software Defined Radio (SDR) and running O-RAN software. Our testbed allows edge devices to communicate with the server using WiFi and Ethernet, instead of 5G. FL is deployed using the Flower FL framework, for which we developed a comprehensive instrumentation tool to collect and analyze diverse communications and machine learning performance metrics including: model aggregation time, downlink transmission time, training time, and uplink transmission time. Leveraging these measurements, we perform a comparative analysis of the FL application across three network interfaces: 5G, WiFi, and Ethernet. Our experimental results suggest that, on 5G, the uplink model transfer time is a significant factor in convergence time of FL. In particular, we find that the 5G uplink contributes to roughly 23% of the duration of one average communication round when using all edge devices in our testbed. When comparing the uplink time of the 5G testbed, we find that it is 33.3x higher than Ethernet and 17.8x higher than WiFi. Our results also suggest that 5G exacerbates the well-known straggler effect. For reproducibility, we have open-sourced our FL application, instrumentation tools, and testbed configuration.

  • 6 authors
·
Apr 6, 2025

Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Environmental Effects, and 90% Coverage

Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5-10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the development of relevant scheduling and beam management algorithms.

  • 15 authors
·
May 19, 2022

Challenging the Need for Packet Spraying in Large-Scale Distributed Training

Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.

  • 3 authors
·
Jun 29, 2024

Cross-Layer Protocols for Multimedia Communications over Wireless Networks

In the last few years, the Internet throughput, usage and reliability have increased almost exponentially. The introduction of broadband wireless mobile ad hoc networks (MANETs) and cellular networks together with increased computational power have opened the door for a new breed of applications to be created, namely real-time multimedia applications. Delivering real-time multimedia traffic over a complex network like the Internet is a particularly challenging task since these applications have strict quality-of-service (QoS) requirements on bandwidth, delay, and delay jitter. Traditional Internet protocol (IP)-based best effort service is not able to meet these stringent requirements. The time-varying nature of wireless channels and resource constrained wireless devices make the problem even more difficult. To improve perceived media quality by end users over wireless Internet, QoS supports can be addressed in different layers, including application layer, transport layer and link layer. Cross layer design is a well-known approach to achieve this adaptation. In cross-layer design, the challenges from the physical wireless medium and the QoS-demands from the applications are taken into account so that the rate, power, and coding at the physical (PHY) layer can adapted to meet the requirements of the applications given the current channel and network conditions. A number of propositions for cross-layer designs exist in the literature. In this chapter, an extensive review has been made on these cross-layer architectures that combine the application-layer, transport layer and the link layer controls. Particularly, the issues like channel estimation techniques, adaptive controls at the application and link layers for energy efficiency, priority based scheduling, transmission rate control at the transport layer, and adaptive automatic repeat request (ARQ) are discussed in detail.

  • 1 authors
·
Oct 1, 2011