Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEHR-R1: A Reasoning-Enhanced Foundational Language Model for Electronic Health Record Analysis
Electronic Health Records (EHRs) contain rich yet complex information, and their automated analysis is critical for clinical decision-making. Despite recent advances of large language models (LLMs) in clinical workflows, their ability to analyze EHRs remains limited due to narrow task coverage and lack of EHR-oriented reasoning capabilities. This paper aims to bridge the gap, specifically, we present EHR-Ins, a large-scale, comprehensive EHR reasoning instruction dataset, comprising 300k high-quality reasoning cases and 4M non-reasoning cases across 42 distinct EHR tasks. Its core innovation is a thinking-graph-driven framework that enables to generate high-quality reasoning data at scale. Based on it, we develop EHR-R1, a series of reasoning-enhanced LLMs with up to 72B parameters tailored for EHR analysis. Through a multi-stage training paradigm, including domain adaptation, reasoning enhancement, and reinforcement learning, EHR-R1 systematically acquires domain knowledge and diverse reasoning capabilities, enabling accurate and robust EHR analysis. Lastly, we introduce EHR-Bench, a new benchmark curated from MIMIC-IV, spanning 42 tasks, to comprehensively assess reasoning and prediction across EHR scenarios. In experiments, we show that the resulting EHR-R1 consistently outperforms state-of-the-art commercial and open-source LLMs (including DeepSeek-V3 and GPT-4o), surpassing GPT-4o by over 30 points on MIMIC-Bench and achieving a 10\% higher zero-shot AUROC on EHRSHOT. Collectively, EHR-Ins, EHR-R1, and EHR-Bench have significantly advanced the development for more reliable and clinically relevant EHR analysis.
EHRXQA: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images
Electronic Health Records (EHRs), which contain patients' medical histories in various multi-modal formats, often overlook the potential for joint reasoning across imaging and table modalities underexplored in current EHR Question Answering (QA) systems. In this paper, we introduce EHRXQA, a novel multi-modal question answering dataset combining structured EHRs and chest X-ray images. To develop our dataset, we first construct two uni-modal resources: 1) The MIMIC- CXR-VQA dataset, our newly created medical visual question answering (VQA) benchmark, specifically designed to augment the imaging modality in EHR QA, and 2) EHRSQL (MIMIC-IV), a refashioned version of a previously established table-based EHR QA dataset. By integrating these two uni-modal resources, we successfully construct a multi-modal EHR QA dataset that necessitates both uni-modal and cross-modal reasoning. To address the unique challenges of multi-modal questions within EHRs, we propose a NeuralSQL-based strategy equipped with an external VQA API. This pioneering endeavor enhances engagement with multi-modal EHR sources and we believe that our dataset can catalyze advances in real-world medical scenarios such as clinical decision-making and research. EHRXQA is available at https://github.com/baeseongsu/ehrxqa.
Electronic properties, correlated topology and Green's function zeros
There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.
CliniQ: A Multi-faceted Benchmark for Electronic Health Record Retrieval with Semantic Match Assessment
Electronic Health Record (EHR) retrieval plays a pivotal role in various clinical tasks, but its development has been severely impeded by the lack of publicly available benchmarks. In this paper, we introduce a novel public EHR retrieval benchmark, CliniQ, to address this gap. We consider two retrieval settings: Single-Patient Retrieval and Multi-Patient Retrieval, reflecting various real-world scenarios. Single-Patient Retrieval focuses on finding relevant parts within a patient note, while Multi-Patient Retrieval involves retrieving EHRs from multiple patients. We build our benchmark upon 1,000 discharge summary notes along with the ICD codes and prescription labels from MIMIC-III, and collect 1,246 unique queries with 77,206 relevance judgments by further leveraging powerful LLMs as annotators. Additionally, we include a novel assessment of the semantic gap issue in EHR retrieval by categorizing matching types into string match and four types of semantic matches. On our proposed benchmark, we conduct a comprehensive evaluation of various retrieval methods, ranging from conventional exact match to popular dense retrievers. Our experiments find that BM25 sets a strong baseline and performs competitively to the dense retrievers, and general domain dense retrievers surprisingly outperform those designed for the medical domain. In-depth analyses on various matching types reveal the strengths and drawbacks of different methods, enlightening the potential for targeted improvement. We believe that our benchmark will stimulate the research communities to advance EHR retrieval systems.
Electronic properties and transport in metal/2D material/metal vertical junctions
We simulate the electronic and transport properties of metal/two-dimensional material/metal vertical heterostructures, with a focus on graphene, hexagonal boron nitride and two phases of molybdenum diselenide. Using density functional theory and non-equilibrium Green's function, we assess how stacking configurations and material thickness impact important properties, such as density of states, potential barriers and conductivity. For monolayers, strong orbital hybridization with the metallic electrodes significantly alters the electronic characteristics, with the formation of states within the gap of the semiconducting 2D materials. Trilayers reveal the critical role of interlayer coupling, where the middle layer retains its intrinsic properties, thus influencing the overall conductivity. Our findings highlight the potential for customized multilayer designs to optimize electronic device performance based on two-dimensional materials.
EHRmonize: A Framework for Medical Concept Abstraction from Electronic Health Records using Large Language Models
Electronic health records (EHRs) contain vast amounts of complex data, but harmonizing and processing this information remains a challenging and costly task requiring significant clinical expertise. While large language models (LLMs) have shown promise in various healthcare applications, their potential for abstracting medical concepts from EHRs remains largely unexplored. We introduce EHRmonize, a framework leveraging LLMs to abstract medical concepts from EHR data. Our study uses medication data from two real-world EHR databases to evaluate five LLMs on two free-text extraction and six binary classification tasks across various prompting strategies. GPT-4o's with 10-shot prompting achieved the highest performance in all tasks, accompanied by Claude-3.5-Sonnet in a subset of tasks. GPT-4o achieved an accuracy of 97% in identifying generic route names, 82% for generic drug names, and 100% in performing binary classification of antibiotics. While EHRmonize significantly enhances efficiency, reducing annotation time by an estimated 60%, we emphasize that clinician oversight remains essential. Our framework, available as a Python package, offers a promising tool to assist clinicians in EHR data abstraction, potentially accelerating healthcare research and improving data harmonization processes.
Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records
Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.
Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations
Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively.
Variationally Regularized Graph-based Representation Learning for Electronic Health Records
Electronic Health Records (EHR) are high-dimensional data with implicit connections among thousands of medical concepts. These connections, for instance, the co-occurrence of diseases and lab-disease correlations can be informative when only a subset of these variables is documented by the clinician. A feasible approach to improving the representation learning of EHR data is to associate relevant medical concepts and utilize these connections. Existing medical ontologies can be the reference for EHR structures, but they place numerous constraints on the data source. Recent progress on graph neural networks (GNN) enables end-to-end learning of topological structures for non-grid or non-sequential data. However, there are problems to be addressed on how to learn the medical graph adaptively and how to understand the effect of the medical graph on representation learning. In this paper, we propose a variationally regularized encoder-decoder graph network that achieves more robustness in graph structure learning by regularizing node representations. Our model outperforms the existing graph and non-graph based methods in various EHR predictive tasks based on both public data and real-world clinical data. Besides the improvements in empirical experiment performances, we provide an interpretation of the effect of variational regularization compared to standard graph neural network, using singular value analysis.
ECM: A Unified Electronic Circuit Model for Explaining the Emergence of In-Context Learning and Chain-of-Thought in Large Language Model
Recent advancements in large language models (LLMs) have led to significant successes across various applications, where the most noticeable is to a series of emerging capabilities, particularly in the areas of In-Context Learning (ICL) and Chain-of-Thought (CoT). To better understand and control model performance, many studies have begun investigating the underlying causes of these phenomena and their impact on task outcomes. However, existing explanatory frameworks predominantly focus on isolating and explaining ICL and CoT independently, leading to an incomplete understanding of their combined influence on model performance. To address this gap, we propose the Electronic Circuit Model (ECM), which provides a foundation for developing scalable, learnable policies and improving the management of AI-generated content. Specifically, ECM conceptualizes model behavior as an electronic circuit: ICL is represented as semantic magnetic field to providing an additional voltage following Faraday's Law, while CoT is modeled as series resistors to constrain the model output performance following Ohm's Law. Experimental results demonstrate that the ECM effectively predicts and explains LLM performance across a variety of prompting strategies. Furthermore, we apply ECM to advanced reasoning strategy optimization on a series of tasks, such as the International Olympiad in Informatics (IOI) and the International Mathematical Olympiad (IMO), achieving competitive performance that surpasses nearly 80% of top human competitors.
Machine learning thermal circuit network model for thermal design optimization of electronic circuit board layout with transient heating chips
This paper describes a method combining Bayesian optimization (BO) and a lamped-capacitance thermal circuit network model that is effective for speeding up the thermal design optimization of an electronic circuit board layout with transient heating chips. As electronic devices have become smaller and more complex, the importance of thermal design optimization to ensure heat dissipation performance has increased. However, such thermal design optimization is difficult because it is necessary to consider various trade-offs associated with packaging and transient temperature changes of heat-generating components. This study aims to improve the performance of thermal design optimization by artificial intelligence. BO using a Gaussian process was combined with the lamped-capacitance thermal circuit network model, and its performance was verified by case studies. As a result, BO successfully found the ideal circuit board layout as well as particle swarm optimization (PSO) and genetic algorithm (GA) could. The CPU time for BO was 1/5 and 1/4 of that for PSO and GA, respectively. In addition, BO found a non-intuitive optimal solution in approximately 7 minutes from 10 million layout patterns. It was estimated that this was 1/1000 of the CPU time required for analyzing all layout patterns.
ESPORT: Electronic Sports Professionals Observations and Reflections on Training
Esports and high performance human-computer interaction are on the forefront of applying new hardware and software technologies in practice. Despite that, there is a paucity of research on how semi-professional and professional championship level players approach aspects of their preparation. To address that, we have performed, transcribed, and analyzed interviews with top-tournament players, coaches, and managers across multiple game titles. The interviews range from competitive events occuring between 2015-2020. Initial processing included transcription and manual verification. The pre-processed interview data were then organized and structured into relevant categories, touching on psychological, physical, and nutritional aspects of esports preparation. Further, where applicable, interview responses where rated and quantified via consensus judgement by a panel of experts. The results indicate that physical training was most often mentioned as a relevant or consistent activity, while nutrition was indicated as relatively unimportant. Qualitative analysis also indicated that consistency and resiliency were noted as the most key factors recommended for upcoming esports competitors. It is also clear that many players put emphasis on balancing their gameplay time and with activities. Lastly, we identified important areas of inquiry towards a deeper understanding of the mental and physical demands of professional esports players.
Disentangling lattice and electronic contributions to the metal-insulator transition from bulk vs. layer confined RNiO$_3$
In complex oxide materials, changes in electronic properties are often associated with changes in crystal structure, raising the question of the relative roles of the electronic and lattice effects in driving the metal-insulator transition. This paper presents a combined theoretical and experimental analysis of the dependence of the metal-insulator transition of NdNiO_3 on crystal structure, specifically comparing properties of bulk materials to one and two layer samples of NdNiO_3 grown between multiple electronically inert NdAlO_3 counterlayers in a superlattice. The comparison amplifies and validates a theoretical approach developed in previous papers and disentangles the electronic and lattice contributions, through an independent variation of each. In bulk NdNiO_3 the correlations are not strong enough to drive a metal-insulator transition by themselves: a lattice distortion is required. Ultra-thin films exhibit two additional electronic effects and one lattice-related effect. The electronic effects are quantum confinement, leading to dimensional reduction of the electronic Hamiltonian, and an increase in electronic bandwidth due to counterlayer induced bond angle changes. We find that the confinement effect is much more important. The lattice effect is an increase in stiffness due to the cost of propagation of the lattice disproportionation into the confining material.
Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields
Creating a single unified interatomic potential capable of attaining ab initio accuracy across all chemistry remains a long-standing challenge in computational chemistry and materials science. This work introduces a training protocol for foundation machine-learning interatomic potentials (MLIPs) that bridge molecular, surface, and materials chemistry through cross-domain learning. First, we introduce enhancements to the MACE architecture that improve its performance on chemically diverse databases by increasing weight sharing across chemical elements and introducing non-linear factors into the tensor decomposition of the product basis. Second, we develop a multi-head replay post-training methodology that enables efficient knowledge transfer across diverse chemical domains. By fine-tuning on datasets at different levels of electronic structure theory, including inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry, we demonstrate that a single unified model achieves state-of-the-art performance across several chemical domains. Comprehensive benchmarking reveals superior cross-domain transferability compared with existing specialised and multi-task models, with notable improvements in molecular and surface properties while maintaining state-of-the-art performance in materials-property prediction.
Foundation models for electronic health records: representation dynamics and transferability
Foundation models (FMs) trained on electronic health records (EHRs) have shown strong performance on a range of clinical prediction tasks. However, adapting these models to local health systems remains challenging due to limited data availability and resource constraints. In this study, we investigated what these models learn and evaluated the transferability of an FM trained on MIMIC-IV to an institutional EHR dataset at the University of Chicago Medical Center. We assessed their ability to identify outlier patients and examined representation-space patient trajectories in relation to future clinical outcomes. We also evaluated the performance of supervised fine-tuned classifiers on both source and target datasets. Our findings offer insights into the adaptability of FMs across different healthcare systems, highlight considerations for their effective implementation, and provide an empirical analysis of the underlying factors that contribute to their predictive performance.
Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
Hospitals struggle to predict critical outcomes. Traditional early warning systems, like NEWS and MEWS, rely on static variables and fixed thresholds, limiting their adaptability, accuracy, and personalization. We previously developed the Enhanced Transformer for Health Outcome Simulation (ETHOS), an AI model that tokenizes patient health timelines (PHTs) from EHRs and uses transformer-based architectures to predict future PHTs. ETHOS is a versatile framework for developing a wide range of applications. In this work, we develop the Adaptive Risk Estimation System (ARES) that leverages ETHOS to compute dynamic, personalized risk probabilities for clinician-defined critical events. ARES also features a personalized explainability module that highlights key clinical factors influencing risk estimates. We evaluated ARES using the MIMIC-IV v2.2 dataset together with its Emergency Department (ED) extension and benchmarked performance against both classical early warning systems and contemporary machine learning models. The entire dataset was tokenized resulting in 285,622 PHTs, comprising over 360 million tokens. ETHOS outperformed benchmark models in predicting hospital admissions, ICU admissions, and prolonged stays, achieving superior AUC scores. Its risk estimates were robust across demographic subgroups, with calibration curves confirming model reliability. The explainability module provided valuable insights into patient-specific risk factors. ARES, powered by ETHOS, advances predictive healthcare AI by delivering dynamic, real-time, personalized risk estimation with patient-specific explainability. Although our results are promising, the clinical impact remains uncertain. Demonstrating ARES's true utility in real-world settings will be the focus of our future work. We release the source code to facilitate future research.
AI-Driven Electronic Health Records System for Enhancing Patient Data Management and Diagnostic Support in Egypt
Digital healthcare infrastructure is crucial for global medical service delivery. Egypt faces EHR adoption barriers: only 314 hospitals had such systems as of Oct 2024. This limits data management and decision-making. This project introduces an EHR system for Egypt's Universal Health Insurance and healthcare ecosystem. It simplifies data management by centralizing medical histories with a scalable micro-services architecture and polyglot persistence for real-time access and provider communication. Clinical workflows are enhanced via patient examination and history tracking. The system uses the Llama3-OpenBioLLM-70B model to generate summaries of medical histories, provide chatbot features, and generate AI-based medical reports, enabling efficient searches during consultations. A Vision Transformer (ViT) aids in pneumonia classification. Evaluations show the AI excels in capturing details (high recall) but needs improvement in concise narratives. With optimization (retrieval-augmented generation, local data fine-tuning, interoperability protocols), this AI-driven EHR could enhance diagnostic support, decision-making, and healthcare delivery in Egypt.
Almanac Copilot: Towards Autonomous Electronic Health Record Navigation
Clinicians spend large amounts of time on clinical documentation, and inefficiencies impact quality of care and increase clinician burnout. Despite the promise of electronic medical records (EMR), the transition from paper-based records has been negatively associated with clinician wellness, in part due to poor user experience, increased burden of documentation, and alert fatigue. In this study, we present Almanac Copilot, an autonomous agent capable of assisting clinicians with EMR-specific tasks such as information retrieval and order placement. On EHR-QA, a synthetic evaluation dataset of 300 common EHR queries based on real patient data, Almanac Copilot obtains a successful task completion rate of 74% (n = 221 tasks) with a mean score of 2.45 over 3 (95% CI:2.34-2.56). By automating routine tasks and streamlining the documentation process, our findings highlight the significant potential of autonomous agents to mitigate the cognitive load imposed on clinicians by current EMR systems.
Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review
Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.
Uncertainty-Aware Text-to-Program for Question Answering on Structured Electronic Health Records
Question Answering on Electronic Health Records (EHR-QA) has a significant impact on the healthcare domain, and it is being actively studied. Previous research on structured EHR-QA focuses on converting natural language queries into query language such as SQL or SPARQL (NLQ2Query), so the problem scope is limited to pre-defined data types by the specific query language. In order to expand the EHR-QA task beyond this limitation to handle multi-modal medical data and solve complex inference in the future, more primitive systemic language is needed. In this paper, we design the program-based model (NLQ2Program) for EHR-QA as the first step towards the future direction. We tackle MIMICSPARQL*, the graph-based EHR-QA dataset, via a program-based approach in a semi-supervised manner in order to overcome the absence of gold programs. Without the gold program, our proposed model shows comparable performance to the previous state-of-the-art model, which is an NLQ2Query model (0.9% gain). In addition, for a reliable EHR-QA model, we apply the uncertainty decomposition method to measure the ambiguity in the input question. We empirically confirmed data uncertainty is most indicative of the ambiguity in the input question.
Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework
Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper we meticulously create a large amount of data connected with E-manuals and develop suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40% in ROUGE-L F1 scores over the most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.
ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations
We focus on electronic theses and dissertations (ETDs), aiming to improve access and expand their utility, since more than 6 million are publicly available, and they constitute an important corpus to aid research and education across disciplines. The corpus is growing as new born-digital documents are included, and since millions of older theses and dissertations have been converted to digital form to be disseminated electronically in institutional repositories. In ETDs, as with other scholarly works, figures and tables can communicate a large amount of information in a concise way. Although methods have been proposed for extracting figures and tables from born-digital PDFs, they do not work well with scanned ETDs. Considering this problem, our assessment of state-of-the-art figure extraction systems is that the reason they do not function well on scanned PDFs is that they have only been trained on born-digital documents. To address this limitation, we present ScanBank, a new dataset containing 10 thousand scanned page images, manually labeled by humans as to the presence of the 3.3 thousand figures or tables found therein. We use this dataset to train a deep neural network model based on YOLOv5 to accurately extract figures and tables from scanned ETDs. We pose and answer important research questions aimed at finding better methods for figure extraction from scanned documents. One of those concerns the value for training, of data augmentation techniques applied to born-digital documents which are used to train models better suited for figure extraction from scanned documents. To the best of our knowledge, ScanBank is the first manually annotated dataset for figure and table extraction for scanned ETDs. A YOLOv5-based model, trained on ScanBank, outperforms existing comparable open-source and freely available baseline methods by a considerable margin.
MedAlign: A Clinician-Generated Dataset for Instruction Following with Electronic Medical Records
The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care. However, evaluating LLMs on realistic text generation tasks for healthcare remains challenging. Existing question answering datasets for electronic health record (EHR) data fail to capture the complexity of information needs and documentation burdens experienced by clinicians. To address these challenges, we introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data. MedAlign is curated by 15 clinicians (7 specialities), includes clinician-written reference responses for 303 instructions, and provides 276 longitudinal EHRs for grounding instruction-response pairs. We used MedAlign to evaluate 6 general domain LLMs, having clinicians rank the accuracy and quality of each LLM response. We found high error rates, ranging from 35% (GPT-4) to 68% (MPT-7B-Instruct), and an 8.3% drop in accuracy moving from 32k to 2k context lengths for GPT-4. Finally, we report correlations between clinician rankings and automated natural language generation metrics as a way to rank LLMs without human review. We make MedAlign available under a research data use agreement to enable LLM evaluations on tasks aligned with clinician needs and preferences.
EHRMamba: Towards Generalizable and Scalable Foundation Models for Electronic Health Records
Transformers have significantly advanced the modeling of Electronic Health Records (EHR), yet their deployment in real-world healthcare is limited by several key challenges. Firstly, the quadratic computational cost and insufficient context length of these models pose significant obstacles for hospitals in processing the extensive medical histories typical in EHR data. Additionally, existing models employ separate finetuning for each clinical task, complicating maintenance in healthcare environments. Moreover, these models focus exclusively on either clinical prediction or EHR forecasting, lacking the flexibility to perform well across both. To overcome these limitations, we introduce EHRMamba, a robust foundation model built on the Mamba architecture. EHRMamba can process sequences up to four times longer than previous models due to its linear computational cost. We also introduce a novel approach to Multitask Prompted Finetuning (MTF) for EHR data, which enables EHRMamba to simultaneously learn multiple clinical tasks in a single finetuning phase, significantly enhancing deployment and cross-task generalization. Furthermore, our model leverages the HL7 FHIR data standard to simplify integration into existing hospital systems. Alongside EHRMamba, we open-source Odyssey, a toolkit designed to support the development and deployment of EHR foundation models, with an emphasis on data standardization and interpretability. Our evaluations on the MIMIC-IV dataset demonstrate that EHRMamba advances state-of-the-art performance across 6 major clinical tasks and excels in EHR forecasting, marking a significant leap forward in the field.
Towards Visual Re-Identification of Fish using Fine-Grained Classification for Electronic Monitoring in Fisheries
Accurate fisheries data are crucial for effective and sustainable marine resource management. With the recent adoption of Electronic Monitoring (EM) systems, more video data is now being collected than can be feasibly reviewed manually. This paper addresses this challenge by developing an optimized deep learning pipeline for automated fish re-identification (Re-ID) using the novel AutoFish dataset, which simulates EM systems with conveyor belts with six similarly looking fish species. We demonstrate that key Re-ID metrics (R1 and mAP@k) are substantially improved by using hard triplet mining in conjunction with a custom image transformation pipeline that includes dataset-specific normalization. By employing these strategies, we demonstrate that the Vision Transformer-based Swin-T architecture consistently outperforms the Convolutional Neural Network-based ResNet-50, achieving peak performance of 41.65% mAP@k and 90.43% Rank-1 accuracy. An in-depth analysis reveals that the primary challenge is distinguishing visually similar individuals of the same species (Intra-species errors), where viewpoint inconsistency proves significantly more detrimental than partial occlusion. The source code and documentation are available at: https://github.com/msamdk/Fish_Re_Identification.git
Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling
Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at irregular time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5\%, 3.6\%, and 4.3\% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.
SANSformers: Self-Supervised Forecasting in Electronic Health Records with Attention-Free Models
Despite the proven effectiveness of Transformer neural networks across multiple domains, their performance with Electronic Health Records (EHR) can be nuanced. The unique, multidimensional sequential nature of EHR data can sometimes make even simple linear models with carefully engineered features more competitive. Thus, the advantages of Transformers, such as efficient transfer learning and improved scalability are not always fully exploited in EHR applications. Addressing these challenges, we introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data. In this work, we aim to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities. The challenge amplifies when dealing with divergent patient subgroups, like those with rare diseases, which are characterized by unique health trajectories and are typically smaller in size. To address this, we employ a self-supervised pretraining strategy, Generative Summary Pretraining (GSP), which predicts future summary statistics based on past health records of a patient. Our models are pretrained on a health registry of nearly one million patients, then fine-tuned for specific subgroup prediction tasks, showcasing the potential to handle the multifaceted nature of EHR data. In evaluation, SANSformer consistently surpasses robust EHR baselines, with our GSP pretraining method notably amplifying model performance, particularly within smaller patient subgroups. Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records
One important challenge of applying deep learning to electronic health records (EHR) is the complexity of their multimodal structure. EHR usually contains a mixture of structured (codes) and unstructured (free-text) data with sparse and irregular longitudinal features -- all of which doctors utilize when making decisions. In the deep learning regime, determining how different modality representations should be fused together is a difficult problem, which is often addressed by handcrafted modeling and intuition. In this work, we extend state-of-the-art neural architecture search (NAS) methods and propose MUltimodal Fusion Architecture SeArch (MUFASA) to simultaneously search across multimodal fusion strategies and modality-specific architectures for the first time. We demonstrate empirically that our MUFASA method outperforms established unimodal NAS on public EHR data with comparable computation costs. In addition, MUFASA produces architectures that outperform Transformer and Evolved Transformer. Compared with these baselines on CCS diagnosis code prediction, our discovered models improve top-5 recall from 0.88 to 0.91 and demonstrate the ability to generalize to other EHR tasks. Studying our top architecture in depth, we provide empirical evidence that MUFASA's improvements are derived from its ability to both customize modeling for each data modality and find effective fusion strategies.
An Efficient Model for Sentiment Analysis of Electronic Product Reviews in Vietnamese
In the past few years, the growth of e-commerce and digital marketing in Vietnam has generated a huge volume of opinionated data. Analyzing those data would provide enterprises with insight for better business decisions. In this work, as part of the Advosights project, we study sentiment analysis of product reviews in Vietnamese. The final solution is based on Self-attention neural networks, a flexible architecture for text classification task with about 90.16% of accuracy in 0.0124 second, a very fast inference time.
Predicting Severe Sepsis Using Text from the Electronic Health Record
Employing a machine learning approach we predict, up to 24 hours prior, a diagnosis of severe sepsis. Strongly predictive models are possible that use only text reports from the Electronic Health Record (EHR), and omit structured numerical data. Unstructured text alone gives slightly better performance than structured data alone, and the combination further improves performance. We also discuss advantages of using unstructured EHR text for modeling, as compared to structured EHR data.
Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction
Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.
EEE-Bench: A Comprehensive Multimodal Electrical And Electronics Engineering Benchmark
Recent studies on large language models (LLMs) and large multimodal models (LMMs) have demonstrated promising skills in various domains including science and mathematics. However, their capability in more challenging and real-world related scenarios like engineering has not been systematically studied. To bridge this gap, we propose EEE-Bench, a multimodal benchmark aimed at assessing LMMs' capabilities in solving practical engineering tasks, using electrical and electronics engineering (EEE) as the testbed. Our benchmark consists of 2860 carefully curated problems spanning 10 essential subdomains such as analog circuits, control systems, etc. Compared to benchmarks in other domains, engineering problems are intrinsically 1) more visually complex and versatile and 2) less deterministic in solutions. Successful solutions to these problems often demand more-than-usual rigorous integration of visual and textual information as models need to understand intricate images like abstract circuits and system diagrams while taking professional instructions, making them excellent candidates for LMM evaluations. Alongside EEE-Bench, we provide extensive quantitative evaluations and fine-grained analysis of 17 widely-used open and closed-sourced LLMs and LMMs. Our results demonstrate notable deficiencies of current foundation models in EEE, with an average performance ranging from 19.48% to 46.78%. Finally, we reveal and explore a critical shortcoming in LMMs which we term laziness: the tendency to take shortcuts by relying on the text while overlooking the visual context when reasoning for technical image problems. In summary, we believe EEE-Bench not only reveals some noteworthy limitations of LMMs but also provides a valuable resource for advancing research on their application in practical engineering tasks, driving future improvements in their capability to handle complex, real-world scenarios.
Large Language Models to Identify Social Determinants of Health in Electronic Health Records
Social determinants of health (SDoH) have an important impact on patient outcomes but are incompletely collected from the electronic health records (EHR). This study researched the ability of large language models to extract SDoH from free text in EHRs, where they are most commonly documented, and explored the role of synthetic clinical text for improving the extraction of these scarcely documented, yet extremely valuable, clinical data. 800 patient notes were annotated for SDoH categories, and several transformer-based models were evaluated. The study also experimented with synthetic data generation and assessed for algorithmic bias. Our best-performing models were fine-tuned Flan-T5 XL (macro-F1 0.71) for any SDoH, and Flan-T5 XXL (macro-F1 0.70). The benefit of augmenting fine-tuning with synthetic data varied across model architecture and size, with smaller Flan-T5 models (base and large) showing the greatest improvements in performance (delta F1 +0.12 to +0.23). Model performance was similar on the in-hospital system dataset but worse on the MIMIC-III dataset. Our best-performing fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models for both tasks. These fine-tuned models were less likely than ChatGPT to change their prediction when race/ethnicity and gender descriptors were added to the text, suggesting less algorithmic bias (p<0.05). At the patient-level, our models identified 93.8% of patients with adverse SDoH, while ICD-10 codes captured 2.0%. Our method can effectively extracted SDoH information from clinic notes, performing better compare to GPT zero- and few-shot settings. These models could enhance real-world evidence on SDoH and aid in identifying patients needing social support.
EHRSQL: A Practical Text-to-SQL Benchmark for Electronic Health Records
We present a new text-to-SQL dataset for electronic health records (EHRs). The utterances were collected from 222 hospital staff members, including physicians, nurses, and insurance review and health records teams. To construct the QA dataset on structured EHR data, we conducted a poll at a university hospital and used the responses to create seed questions. We then manually linked these questions to two open-source EHR databases, MIMIC-III and eICU, and included various time expressions and held-out unanswerable questions in the dataset, which were also collected from the poll. Our dataset poses a unique set of challenges: the model needs to 1) generate SQL queries that reflect a wide range of needs in the hospital, including simple retrieval and complex operations such as calculating survival rate, 2) understand various time expressions to answer time-sensitive questions in healthcare, and 3) distinguish whether a given question is answerable or unanswerable. We believe our dataset, EHRSQL, can serve as a practical benchmark for developing and assessing QA models on structured EHR data and take a step further towards bridging the gap between text-to-SQL research and its real-life deployment in healthcare. EHRSQL is available at https://github.com/glee4810/EHRSQL.
Quantifying surprise in clinical care: Detecting highly informative events in electronic health records with foundation models
We present a foundation model-derived method to identify highly informative tokens and events in electronic health records. Our approach considers incoming data in the entire context of a patient's hospitalization and so can flag anomalous events that rule-based approaches would consider within a normal range. We demonstrate that the events our model flags are significant for predicting downstream patient outcomes and that a fraction of events identified as carrying little information can safely be dropped. Additionally, we show how informativeness can help interpret the predictions of prognostic models trained on foundation model-derived representations.
Revisiting the MIMIC-IV Benchmark: Experiments Using Language Models for Electronic Health Records
The lack of standardized evaluation benchmarks in the medical domain for text inputs can be a barrier to widely adopting and leveraging the potential of natural language models for health-related downstream tasks. This paper revisited an openly available MIMIC-IV benchmark for electronic health records (EHRs) to address this issue. First, we integrate the MIMIC-IV data within the Hugging Face datasets library to allow an easy share and use of this collection. Second, we investigate the application of templates to convert EHR tabular data to text. Experiments using fine-tuned and zero-shot LLMs on the mortality of patients task show that fine-tuned text-based models are competitive against robust tabular classifiers. In contrast, zero-shot LLMs struggle to leverage EHR representations. This study underlines the potential of text-based approaches in the medical field and highlights areas for further improvement.
ElectroVizQA: How well do Multi-modal LLMs perform in Electronics Visual Question Answering?
Multi-modal Large Language Models (MLLMs) are gaining significant attention for their ability to process multi-modal data, providing enhanced contextual understanding of complex problems. MLLMs have demonstrated exceptional capabilities in tasks such as Visual Question Answering (VQA); however, they often struggle with fundamental engineering problems, and there is a scarcity of specialized datasets for training on topics like digital electronics. To address this gap, we propose a benchmark dataset called ElectroVizQA specifically designed to evaluate MLLMs' performance on digital electronic circuit problems commonly found in undergraduate curricula. This dataset, the first of its kind tailored for the VQA task in digital electronics, comprises approximately 626 visual questions, offering a comprehensive overview of digital electronics topics. This paper rigorously assesses the extent to which MLLMs can understand and solve digital electronic circuit questions, providing insights into their capabilities and limitations within this specialized domain. By introducing this benchmark dataset, we aim to motivate further research and development in the application of MLLMs to engineering education, ultimately bridging the performance gap and enhancing the efficacy of these models in technical fields.
SAMDA: Leveraging SAM on Few-Shot Domain Adaptation for Electronic Microscopy Segmentation
It has been shown that traditional deep learning methods for electronic microscopy segmentation usually suffer from low transferability when samples and annotations are limited, while large-scale vision foundation models are more robust when transferring between different domains but facing sub-optimal improvement under fine-tuning. In this work, we present a new few-shot domain adaptation framework SAMDA, which combines the Segment Anything Model(SAM) with nnUNet in the embedding space to achieve high transferability and accuracy. Specifically, we choose the Unet-based network as the "expert" component to learn segmentation features efficiently and design a SAM-based adaptation module as the "generic" component for domain transfer. By amalgamating the "generic" and "expert" components, we mitigate the modality imbalance in the complex pre-training knowledge inherent to large-scale Vision Foundation models and the challenge of transferability inherent to traditional neural networks. The effectiveness of our model is evaluated on two electron microscopic image datasets with different modalities for mitochondria segmentation, which improves the dice coefficient on the target domain by 6.7%. Also, the SAM-based adaptor performs significantly better with only a single annotated image than the 10-shot domain adaptation on nnUNet. We further verify our model on four MRI datasets from different sources to prove its generalization ability.
A Comprehensive Benchmark for COVID-19 Predictive Modeling Using Electronic Health Records in Intensive Care
The COVID-19 pandemic has posed a heavy burden to the healthcare system worldwide and caused huge social disruption and economic loss. Many deep learning models have been proposed to conduct clinical predictive tasks such as mortality prediction for COVID-19 patients in intensive care units using Electronic Health Record (EHR) data. Despite their initial success in certain clinical applications, there is currently a lack of benchmarking results to achieve a fair comparison so that we can select the optimal model for clinical use. Furthermore, there is a discrepancy between the formulation of traditional prediction tasks and real-world clinical practice in intensive care. To fill these gaps, we propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units. The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients. We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks, including 5 machine learning models, 6 basic deep learning models and 6 deep learning predictive models specifically designed for EHR data. We provide benchmarking results using data from two real-world COVID-19 EHR datasets. One dataset is publicly available without needing any inquiry and another dataset can be accessed on request. We provide fair, reproducible benchmarking results for two tasks. We deploy all experiment results and models on an online platform. We also allow clinicians and researchers to upload their data to the platform and get quick prediction results using our trained models. We hope our efforts can further facilitate deep learning and machine learning research for COVID-19 predictive modeling.
Benchmarking emergency department triage prediction models with machine learning and large public electronic health records
The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop predictive models and decision support systems to address these challenges. To date, however, there are no widely accepted benchmark ED triage prediction models based on large-scale public EHR data. An open-source benchmarking platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. In this paper, based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we developed a publicly available benchmark suite for ED triage predictive models and created a benchmark dataset that contains over 400,000 ED visits from 2011 to 2019. We introduced three ED-based outcomes (hospitalization, critical outcomes, and 72-hour ED reattendance) and implemented a variety of popular methodologies, ranging from machine learning methods to clinical scoring systems. We evaluated and compared the performance of these methods against benchmark tasks. Our codes are open-source, allowing anyone with MIMIC-IV-ED data access to perform the same steps in data processing, benchmark model building, and experiments. This study provides future researchers with insights, suggestions, and protocols for managing raw data and developing risk triaging tools for emergency care.
Explainable artificial intelligence model to predict acute critical illness from electronic health records
We developed an explainable artificial intelligence (AI) early warning score (xAI-EWS) system for early detection of acute critical illness. While maintaining a high predictive performance, our system explains to the clinician on which relevant electronic health records (EHRs) data the prediction is grounded. Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as Early Warning Scores (EWS). The predictive performance of EWSs yields a tradeoff between sensitivity and specificity that can lead to negative outcomes for the patient. Previous work on EHR-trained AI systems offers promising results with high levels of predictive performance in relation to the early, real-time prediction of acute critical illness. However, without insight into the complex decisions by such system, clinical translation is hindered. In this letter, we present our xAI-EWS system, which potentiates clinical translation by accompanying a prediction with information on the EHR data explaining it.
Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray imaging (CXR) is an important diagnostic tool used in hospitals to assess patient conditions and monitor changes over time. Generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic X-rays. However, these models mainly focus on conditional generation using single-time-point data, i.e., typically CXRs taken at a specific time with their corresponding reports, limiting their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes, suggesting its potential for further development as a clinical simulation tool. This could offer valuable insights for patient monitoring and treatment planning in the medical field.
Divergent Thoughts toward One Goal: LLM-based Multi-Agent Collaboration System for Electronic Design Automation
Recently, with the development of tool-calling capabilities in large language models (LLMs), these models have demonstrated significant potential for automating electronic design automation (EDA) flows by interacting with EDA tool APIs via EDA scripts. However, considering the limited understanding of EDA tools, LLMs face challenges in practical scenarios where diverse interfaces of EDA tools exist across different platforms. Additionally, EDA flow automation often involves intricate, long-chain tool-calling processes, increasing the likelihood of errors in intermediate steps. Any errors will lead to the instability and failure of EDA flow automation. To address these challenges, we introduce EDAid, a multi-agent collaboration system where multiple agents harboring divergent thoughts converge towards a common goal, ensuring reliable and successful EDA flow automation. Specifically, each agent is controlled by ChipLlama models, which are expert LLMs fine-tuned for EDA flow automation. Our experiments demonstrate the state-of-the-art (SOTA) performance of our ChipLlama models and validate the effectiveness of our EDAid in the automation of complex EDA flows, showcasing superior performance compared to single-agent systems.
GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
SynthCloner: Synthesizer Preset Conversion via Factorized Codec with ADSR Envelope Control
Electronic synthesizer sounds are controlled by presets, parameters settings that yield complex timbral characteristics and ADSR envelopes, making preset conversion particularly challenging. Recent approaches to timbre transfer often rely on spectral objectives or implicit style matching, offering limited control over envelope shaping. Moreover, public synthesizer datasets rarely provide diverse coverage of timbres and ADSR envelopes. To address these gaps, we present SynthCloner, a factorized codec model that disentangles audio into three attributes: ADSR envelope, timbre, and content. This separation enables expressive synthesizer preset conversion with independent control over these three attributes. Additionally, we introduce SynthCAT, a new synthesizer dataset with a task-specific rendering pipeline covering 250 timbres, 120 ADSR envelopes, and 100 MIDI sequences. Experiments show that SynthCloner outperforms baselines on both objective and subjective metrics, while enabling independent attribute control. The code, model checkpoint, and audio examples are available at https://buffett0323.github.io/synthcloner/.
The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.
GENIE: Generative Note Information Extraction model for structuring EHR data
Electronic Health Records (EHRs) hold immense potential for advancing healthcare, offering rich, longitudinal data that combines structured information with valuable insights from unstructured clinical notes. However, the unstructured nature of clinical text poses significant challenges for secondary applications. Traditional methods for structuring EHR free-text data, such as rule-based systems and multi-stage pipelines, are often limited by their time-consuming configurations and inability to adapt across clinical notes from diverse healthcare settings. Few systems provide a comprehensive attribute extraction for terminologies. While giant large language models (LLMs) like GPT-4 and LLaMA 405B excel at structuring tasks, they are slow, costly, and impractical for large-scale use. To overcome these limitations, we introduce GENIE, a Generative Note Information Extraction system that leverages LLMs to streamline the structuring of unstructured clinical text into usable data with standardized format. GENIE processes entire paragraphs in a single pass, extracting entities, assertion statuses, locations, modifiers, values, and purposes with high accuracy. Its unified, end-to-end approach simplifies workflows, reduces errors, and eliminates the need for extensive manual intervention. Using a robust data preparation pipeline and fine-tuned small scale LLMs, GENIE achieves competitive performance across multiple information extraction tasks, outperforming traditional tools like cTAKES and MetaMap and can handle extra attributes to be extracted. GENIE strongly enhances real-world applicability and scalability in healthcare systems. By open-sourcing the model and test data, we aim to encourage collaboration and drive further advancements in EHR structurization.
VecCity: A Taxonomy-guided Library for Map Entity Representation Learning
Electronic maps consist of diverse entities, such as points of interest (POIs), road networks, and land parcels, playing a vital role in applications like ITS and LBS. Map entity representation learning (MapRL) generates versatile and reusable data representations, providing essential tools for efficiently managing and utilizing map entity data. Despite the progress in MapRL, two key challenges constrain further development. First, existing research is fragmented, with models classified by the type of map entity, limiting the reusability of techniques across different tasks. Second, the lack of unified benchmarks makes systematic evaluation and comparison of models difficult. To address these challenges, we propose a novel taxonomy for MapRL that organizes models based on functional module-such as encoders, pre-training tasks, and downstream tasks-rather than by entity type. Building on this taxonomy, we present a taxonomy-driven library, VecCity, which offers easy-to-use interfaces for encoding, pre-training, fine-tuning, and evaluation. The library integrates datasets from nine cities and reproduces 21 mainstream MapRL models, establishing the first standardized benchmarks for the field. VecCity also allows users to modify and extend models through modular components, facilitating seamless experimentation. Our comprehensive experiments cover multiple types of map entities and evaluate 21 VecCity pre-built models across various downstream tasks. Experimental results demonstrate the effectiveness of VecCity in streamlining model development and provide insights into the impact of various components on performance. By promoting modular design and reusability, VecCity offers a unified framework to advance research and innovation in MapRL. The code is available at https://github.com/Bigscity-VecCity/VecCity.
Esports Training, Periodization, and Software -- a Scoping Review
Electronic sports (esports) and research on this emerging field are interdisciplinary in nature. By extension, it is essential to understand how to standardize and structure training with the help of existing tools developed by years of research in sports sciences and informatics. Our goal in this article was to verify if the current body of research contains substantial evidence of the training systems applied to training esports players. To verify the existing sources, we have applied a framework of scoping review to address the search from multiple scientific databases with further local processing. We conclude that the current research on esports dealt mainly with describing and modeling performance metrics spanned over multiple fragmented research areas (psychology, nutrition, informatics), and yet these building blocks were not assembled into an existing well-functioning theory of performance in esports by providing exercise regimes, and ways of periodization for esports.
Zero-shot information extraction from radiological reports using ChatGPT
Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.
Hierarchical Pretraining for Biomedical Term Embeddings
Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications
FRAKE: Fusional Real-time Automatic Keyword Extraction
Keyword extraction is the process of identifying the words or phrases that express the main concepts of text to the best of one's ability. Electronic infrastructure creates a considerable amount of text every day and at all times. This massive volume of documents makes it practically impossible for human resources to study and manage them. Nevertheless, the need for these documents to be accessed efficiently and effectively is evident in numerous purposes. A blog, news article, or technical note is considered a relatively long text since the reader aims to learn the subject based on keywords or topics. Our approach consists of a combination of two models: graph centrality features and textural features. The proposed method has been used to extract the best keyword among the candidate keywords with an optimal combination of graph centralities, such as degree, betweenness, eigenvector, closeness centrality and etc, and textural, such as Casing, Term position, Term frequency normalization, Term different sentence, Part Of Speech tagging. There have also been attempts to distinguish keywords from candidate phrases and consider them on separate keywords. For evaluating the proposed method, seven datasets were used: Semeval2010, SemEval2017, Inspec, fao30, Thesis100, pak2018, and Wikinews, with results reported as Precision, Recall, and F- measure. Our proposed method performed much better in terms of evaluation metrics in all reviewed datasets compared with available methods in literature. An approximate 16.9% increase was witnessed in F-score metric and this was much more for the Inspec in English datasets and WikiNews in forgone languages.
A machine learning route between band mapping and band structure
Electronic band structure (BS) and crystal structure are the two complementary identifiers of solid state materials. While convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting quasiparticle dispersion (closely related to BS) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
Text2Node: a Cross-Domain System for Mapping Arbitrary Phrases to a Taxonomy
Electronic health record (EHR) systems are used extensively throughout the healthcare domain. However, data interchangeability between EHR systems is limited due to the use of different coding standards across systems. Existing methods of mapping coding standards based on manual human experts mapping, dictionary mapping, symbolic NLP and classification are unscalable and cannot accommodate large scale EHR datasets. In this work, we present Text2Node, a cross-domain mapping system capable of mapping medical phrases to concepts in a large taxonomy (such as SNOMED CT). The system is designed to generalize from a limited set of training samples and map phrases to elements of the taxonomy that are not covered by training data. As a result, our system is scalable, robust to wording variants between coding systems and can output highly relevant concepts when no exact concept exists in the target taxonomy. Text2Node operates in three main stages: first, the lexicon is mapped to word embeddings; second, the taxonomy is vectorized using node embeddings; and finally, the mapping function is trained to connect the two embedding spaces. We compared multiple algorithms and architectures for each stage of the training, including GloVe and FastText word embeddings, CNN and Bi-LSTM mapping functions, and node2vec for node embeddings. We confirmed the robustness and generalisation properties of Text2Node by mapping ICD-9-CM Diagnosis phrases to SNOMED CT and by zero-shot training at comparable accuracy. This system is a novel methodological contribution to the task of normalizing and linking phrases to a taxonomy, advancing data interchangeability in healthcare. When applied, the system can use electronic health records to generate an embedding that incorporates taxonomical medical knowledge to improve clinical predictive models.
A Methodology to Generate Virtual Patient Repositories
Electronic medical records (EMR) contain sensitive personal information. For example, they may include details about infectious diseases, such as human immunodeficiency virus (HIV), or they may contain information about a mental illness. They may also contain other sensitive information such as medical details related to fertility treatments. Because EMRs are subject to confidentiality requirements, accessing and analyzing EMR databases is a privilege given to only a small number of individuals. Individuals who work at institutions that do not have access to EMR systems have no opportunity to gain hands-on experience with this valuable resource. Simulated medical databases are currently available; however, they are difficult to configure and are limited in their resemblance to real clinical databases. Generating highly accessible repositories of virtual patient EMRs while relying only minimally on real patient data is expected to serve as a valuable resource to a broader audience of medical personnel, including those who reside in underdeveloped countries.
Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs
Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.
AutoEDA: Enabling EDA Flow Automation through Microservice-Based LLM Agents
Modern Electronic Design Automation (EDA) workflows, especially the RTL-to-GDSII flow, require heavily manual scripting and demonstrate a multitude of tool-specific interactions which limits scalability and efficiency. While LLMs introduces strides for automation, existing LLM solutions require expensive fine-tuning and do not contain standardized frameworks for integration and evaluation. We introduce AutoEDA, a framework for EDA automation that leverages paralleled learning through the Model Context Protocol (MCP) specific for standardized and scalable natural language experience across the entire RTL-to-GDSII flow. AutoEDA limits fine-tuning through structured prompt engineering, implements intelligent parameter extraction and task decomposition, and provides an extended CodeBLEU metric to evaluate the quality of TCL scripts. Results from experiments over five previously curated benchmarks show improvements in automation accuracy and efficiency, as well as script quality when compared to existing methods. AutoEDA is released open-sourced to support reproducibility and the EDA community. Available at: https://github.com/AndyLu666/MCP-EDA-Server
Application of CARE-SD text classifier tools to assess distribution of stigmatizing and doubt-marking language features in EHR
Introduction: Electronic health records (EHR) are a critical medium through which patient stigmatization is perpetuated among healthcare teams. Methods: We identified linguistic features of doubt markers and stigmatizing labels in MIMIC-III EHR via expanded lexicon matching and supervised learning classifiers. Predictors of rates of linguistic features were assessed using Poisson regression models. Results: We found higher rates of stigmatizing labels per chart among patients who were Black or African American (RR: 1.16), patients with Medicare/Medicaid or government-run insurance (RR: 2.46), self-pay (RR: 2.12), and patients with a variety of stigmatizing disease and mental health conditions. Patterns among doubt markers were similar, though male patients had higher rates of doubt markers (RR: 1.25). We found increased stigmatizing labels used by nurses (RR: 1.40), and social workers (RR: 2.25), with similar patterns of doubt markers. Discussion: Stigmatizing language occurred at higher rates among historically stigmatized patients, perpetuated by multiple provider types.
D2S-FLOW: Automated Parameter Extraction from Datasheets for SPICE Model Generation Using Large Language Models
In electronic design, engineers often manually search through extensive documents to retrieve component parameters required for constructing SPICE models, a process that is both labor-intensive and time-consuming. To address this challenge, we present an automated framework called D2S-FLOW that leverages large language models (LLMs) to extract electrical parameters from datasheets and generate SPICE models with high precision and efficiency, significantly reducing the need for manual intervention. Unlike traditional RAG systems, D2S-FLOW employs a workflow to enhance precision in handling unstructured documents and inconsistent naming conventions through three innovative mechanisms: Attention-Guided Document Focusing (AGDF), Hierarchical Document-Enhanced Retrieval (HDER), and Heterogeneous Named Entity Normalization (HNEN). AGDF narrows retrieval to user-selected documents, HDER utilizes document structure for precise parameter localization, and HNEN standardizes terminology via semantic inference. Experimental results demonstrate that the framework achieves an Exact Match (EM) of 0.86, an F1 score of 0.92, and an Exact Correctness (EC) of 0.96, outperforming the strongest baseline by 19.4%, 5.7%, and 13.1%, respectively. Additionally, it reduces API token consumption by 38% and minimizes the irrelevant information ratio to 4%, showcasing substantial improvements in resource efficiency. This research provides an effective automated solution for circuit design.
Direct Adaptive Control of Grid-Connected Power Converters via Output-Feedback Data-Enabled Policy Optimization
Power electronic converters are becoming the main components of modern power systems due to the increasing integration of renewable energy sources. However, power converters may become unstable when interacting with the complex and time-varying power grid. In this paper, we propose an adaptive data-driven control method to stabilize power converters by using only online input-output data. Our contributions are threefold. First, we reformulate the output-feedback control problem as a state-feedback linear quadratic regulator (LQR) problem with a controllable non-minimal state, which can be constructed from past input-output signals. Second, we propose a data-enabled policy optimization (DeePO) method for this non-minimal realization to achieve efficient output-feedback adaptive control. Third, we use high-fidelity simulations to verify that the output-feedback DeePO can effectively stabilize grid-connected power converters and quickly adapt to the changes in the power grid.
A Deep Learning Framework for Verilog Autocompletion Towards Design and Verification Automation
Innovative Electronic Design Automation (EDA) solutions are important to meet the design requirements for increasingly complex electronic devices. Verilog, a hardware description language, is widely used for the design and verification of digital circuits and is synthesized using specific EDA tools. However, writing code is a repetitive and time-intensive task. This paper proposes, primarily, a novel deep learning framework for training a Verilog autocompletion model and, secondarily, a Verilog dataset of files and snippets obtained from open-source repositories. The framework involves integrating models pretrained on general programming language data and finetuning them on a dataset curated to be similar to a target downstream task. This is validated by comparing different pretrained models trained on different subsets of the proposed Verilog dataset using multiple evaluation metrics. These experiments demonstrate that the proposed framework achieves better BLEU, ROUGE-L, and chrF scores by 9.5%, 6.7%, and 6.9%, respectively, compared to a model trained from scratch. Code and data are made available at: https://github.com/99EnriqueD/verilog_autocompletion .
Emergence of a new band and the Lifshitz transition in kagome metal ScV$_6$Sn$_6$ with charge density wave
Topological kagome systems have been a topic of great interest in condensed matter physics due totheir unique electronic properties. The vanadium-based kagome materials are particularly intrigu-ing since they exhibit exotic phenomena such as charge density wave (CDW) and unconventionalsuperconductivity. The origin of these electronic instabilities is not fully understood, and the re-cent discovery of a charge density wave in ScV6Sn6provides a new avenue for investigation. In thiswork, we investigate the electronic structure of the novel kagome metal ScV6Sn6using angle resolvedphotoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and first-principlesdensity functional theory calculations. Our analysis reveals for the first time the temperature-dependent band changes of ScV6Sn6and identifies a new band that exhibits a strong signatureof a structure with CDW below the critical temperature. Further analysis revealed that this newband is due to the surface kagome layer of the CDW structure. In addition, a Lifshitz transition isidentified in the ARPES spectra that is related to the saddle point moving across the Fermi levelat the critical temperature for the CDW formation. This result shows the CDW behavior may alsobe related to nesting of the saddle point, similar to related materials. However, no energy gap is observed at the Fermi level and thus the CDW is not a typical Fermi surface nesting scenario. These results provide new insights into the underlying physics of the CDW in the kagome materials and could have implications for the development of materials with new functionality.
Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs
Printed Electronics (PE) stands out as a promisingtechnology for widespread computing due to its distinct attributes, such as low costs and flexible manufacturing. Unlike traditional silicon-based technologies, PE enables stretchable, conformal,and non-toxic hardware. However, PE are constrained by larger feature sizes, making it challenging to implement complex circuits such as machine learning (ML) classifiers. Approximate computing has been proven to reduce the hardware cost of ML circuits such as Multilayer Perceptrons (MLPs). In this paper, we maximize the benefits of approximate computing by integrating hardware approximation into the MLP training process. Due to the discrete nature of hardware approximation, we propose and implement a genetic-based, approximate, hardware-aware training approach specifically designed for printed MLPs. For a 5% accuracy loss, our MLPs achieve over 5x area and power reduction compared to the baseline while outperforming state of-the-art approximate and stochastic printed MLPs.
Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons
Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
PCBDet: An Efficient Deep Neural Network Object Detection Architecture for Automatic PCB Component Detection on the Edge
There can be numerous electronic components on a given PCB, making the task of visual inspection to detect defects very time-consuming and prone to error, especially at scale. There has thus been significant interest in automatic PCB component detection, particularly leveraging deep learning. However, deep neural networks typically require high computational resources, possibly limiting their feasibility in real-world use cases in manufacturing, which often involve high-volume and high-throughput detection with constrained edge computing resource availability. As a result of an exploration of efficient deep neural network architectures for this use case, we introduce PCBDet, an attention condenser network design that provides state-of-the-art inference throughput while achieving superior PCB component detection performance compared to other state-of-the-art efficient architecture designs. Experimental results show that PCBDet can achieve up to 2times inference speed-up on an ARM Cortex A72 processor when compared to an EfficientNet-based design while achieving sim2-4\% higher mAP on the FICS-PCB benchmark dataset.
Enriching Unsupervised User Embedding via Medical Concepts
Clinical notes in Electronic Health Records (EHR) present rich documented information of patients to inference phenotype for disease diagnosis and study patient characteristics for cohort selection. Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions. Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories. However, existing unsupervised approaches of user embeddings from clinical notes do not explicitly incorporate medical concepts. In this study, we propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora, MIMIC-III and Diabetes. We evaluate user embeddings on both extrinsic and intrinsic tasks, including phenotype classification, in-hospital mortality prediction, patient retrieval, and patient relatedness. Experiments on the two clinical corpora show our approach exceeds unsupervised baselines, and incorporating medical concepts can significantly improve the baseline performance.
ChangeChip: A Reference-Based Unsupervised Change Detection for PCB Defect Detection
The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.
De-identification of Patient Notes with Recurrent Neural Networks
Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical investigations. However, the vast majority of medical investigators can only access de-identified notes, in order to protect the confidentiality of patients. In the United States, the Health Insurance Portability and Accountability Act (HIPAA) defines 18 types of protected health information (PHI) that needs to be removed to de-identify patient notes. Manual de-identification is impractical given the size of EHR databases, the limited number of researchers with access to the non-de-identified notes, and the frequent mistakes of human annotators. A reliable automated de-identification system would consequently be of high value. Materials and Methods: We introduce the first de-identification system based on artificial neural networks (ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the performance of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge dataset, which is the largest publicly available de-identification dataset, and the MIMIC de-identification dataset, which we assembled and is twice as large as the i2b2 2014 dataset. Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the i2b2 2014 dataset, with a recall 97.38 and a precision of 97.32, and an F1-score of 99.23 on the MIMIC de-identification dataset, with a recall 99.25 and a precision of 99.06. Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show better performance than previously published systems while requiring no feature engineering.
Oxidation State Dynamics and Emerging Patterns in Magnetite
Magnetite is an important mineral with many interesting applications related to its magnetic, electrical and thermal properties. Typically studied by electronic structure calculations, these methods are unable to capture the complex ion dynamics at relevant temperatures, time and length scales. We present a hybrid Monte Carlo/Molecular Dynamics (MC/MD) method based on iron oxidation state exchange for accurate atomistic modelling of bulk magnetite, magnetite surfaces and nanoparticles that captures the complex ionic dynamics. By comparing oxidation state patterns with those obtained from density functional theory, we confirmed the accuracy of our approach. Lattice distortions leading to the stabilisation of excess charges and a critical surface thickness at which the oxidation states transition from ordered to disordered were observed. This simple yet efficient approach paves the way for elucidating aspects of oxidation state ordering of inverse spinel structures in general and battery materials in particular.
Pattern Recognition of Illicit E-Waste Misclassification in Global Trade Data
The global trade in electronic and electrical goods is complicated by the challenge of identifying e-waste, which is often misclassified to evade regulations. Traditional analysis methods struggle to discern the underlying patterns of this illicit trade within vast datasets. This research proposes and validates a robust, data-driven framework to segment products and identify goods exhibiting an anomalous "waste signature" a trade pattern defined by a clear 'inverse price-volume'. The core of the framework is an Outlier-Aware Segmentation method, an iterative K-Means approach that first isolates extreme outliers to prevent data skewing and then re-clusters the remaining products to reveal subtle market segments. To quantify risk, a "Waste Score" is developed using a Logistic Regression model that identifies products whose trade signatures are statistically similar to scrap. The findings reveal a consistent four-tier market hierarchy in both Malaysian and global datasets. A key pattern emerged from a comparative analysis: Malaysia's market structure is defined by high-volume bulk commodities, whereas the global market is shaped by high-value capital goods, indicating a unique national specialization. The framework successfully flags finished goods, such as electric generators (HS 8502), that are traded like scrap, providing a targeted list for regulatory scrutiny.
Efficient Implementation of Gaussian Process Regression Accelerated Saddle Point Searches with Application to Molecular Reactions
The task of locating first order saddle points on high-dimensional surfaces describing the variation of energy as a function of atomic coordinates is an essential step for identifying the mechanism and estimating the rate of thermally activated events within the harmonic approximation of transition state theory. When combined directly with electronic structure calculations, the number of energy and atomic force evaluations needed for convergence is a primary issue. Here, we describe an efficient implementation of Gaussian process regression (GPR) acceleration of the minimum mode following method where a dimer is used to estimate the lowest eigenmode of the Hessian. A surrogate energy surface is constructed and updated after each electronic structure calculation. The method is applied to a test set of 500 molecular reactions previously generated by Hermez and coworkers [J. Chem. Theory Comput. 18, 6974 (2022)]. An order of magnitude reduction in the number of electronic structure calculations needed to reach the saddle point configurations is obtained by using the GPR compared to the dimer method. Despite the wide range in stiffness of the molecular degrees of freedom, the calculations are carried out using Cartesian coordinates and are found to require similar number of electronic structure calculations as an elaborate internal coordinate method implemented in the Sella software package. The present implementation of the GPR surrogate model in C++ is efficient enough for the wall time of the saddle point searches to be reduced in 3 out of 4 cases even though the calculations are carried out at a low Hartree-Fock level.
Patient Trajectory Prediction: Integrating Clinical Notes with Transformers
Predicting disease trajectories from electronic health records (EHRs) is a complex task due to major challenges such as data non-stationarity, high granularity of medical codes, and integration of multimodal data. EHRs contain both structured data, such as diagnostic codes, and unstructured data, such as clinical notes, which hold essential information often overlooked. Current models, primarily based on structured data, struggle to capture the complete medical context of patients, resulting in a loss of valuable information. To address this issue, we propose an approach that integrates unstructured clinical notes into transformer-based deep learning models for sequential disease prediction. This integration enriches the representation of patients' medical histories, thereby improving the accuracy of diagnosis predictions. Experiments on MIMIC-IV datasets demonstrate that the proposed approach outperforms traditional models relying solely on structured data.
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction
Previous studies reveal that Electronic Health Records (EHR), which have been widely adopted in the U.S. to allow patients to access their personal medical information, do not have high readability to patients due to the prevalence of medical jargon. Tailoring medical notes to individual comprehension by identifying jargon that is difficult for each person will enhance the utility of generative models. We present the first quantitative analysis to measure the impact of role-playing in LLM in medical term extraction. By comparing the results of Mechanical Turk workers over 20 sentences, our study demonstrates that LLM role-playing improves F1 scores in 95% of cases across 14 different socio-demographic backgrounds. Furthermore, applying role-playing with in-context learning outperformed the previous state-of-the-art models. Our research showed that ChatGPT can improve traditional medical term extraction systems by utilizing role-play to deliver personalized patient education, a potential that previous models had not achieved.
Convolutional Neural Networks and Volcano Plots: Screening and Prediction of Two-Dimensional Single-Atom Catalysts
Single-atom catalysts (SACs) have emerged as frontiers for catalyzing chemical reactions, yet the diverse combinations of active elements and support materials, the nature of coordination environments, elude traditional methodologies in searching optimal SAC systems with superior catalytic performance. Herein, by integrating multi-branch Convolutional Neural Network (CNN) analysis models to hybrid descriptor based activity volcano plot, 2D SAC system composed of diverse metallic single atoms anchored on six type of 2D supports, including graphitic carbon nitride, nitrogen-doped graphene, graphene with dual-vacancy, black phosphorous, boron nitride, and C2N, are screened for efficient CO2RR. Starting from establishing a correlation map between the adsorption energies of intermediates and diverse electronic and elementary descriptors, sole singular descriptor lost magic to predict catalytic activity. Deep learning method utilizing multi-branch CNN model therefore was employed, using 2D electronic density of states as input to predict adsorption energies. Hybrid-descriptor enveloping both C- and O-types of CO2RR intermediates was introduced to construct volcano plots and limiting potential periodic table, aiming for intuitive screening of catalyst candidates for efficient CO2 reduction to CH4. The eDOS occlusion experiments were performed to unravel individual orbital contribution to adsorption energy. To explore the electronic scale principle governing practical engineering catalytic CO2RR activity, orbitalwise eDOS shifting experiments based on CNN model were employed. The study involves examining the adsorption energy and, consequently, catalytic activities while varying supported single atoms. This work offers a tangible framework to inform both theoretical screening and experimental synthesis, thereby paving the way for systematically designing efficient SACs.
Large Language Models with Retrieval-Augmented Generation for Zero-Shot Disease Phenotyping
Identifying disease phenotypes from electronic health records (EHRs) is critical for numerous secondary uses. Manually encoding physician knowledge into rules is particularly challenging for rare diseases due to inadequate EHR coding, necessitating review of clinical notes. Large language models (LLMs) offer promise in text understanding but may not efficiently handle real-world clinical documentation. We propose a zero-shot LLM-based method enriched by retrieval-augmented generation and MapReduce, which pre-identifies disease-related text snippets to be used in parallel as queries for the LLM to establish diagnosis. We show that this method as applied to pulmonary hypertension (PH), a rare disease characterized by elevated arterial pressures in the lungs, significantly outperforms physician logic rules (F_1 score of 0.62 vs. 0.75). This method has the potential to enhance rare disease cohort identification, expanding the scope of robust clinical research and care gap identification.
Leveraging Generative AI Models for Synthetic Data Generation in Healthcare: Balancing Research and Privacy
The widespread adoption of electronic health records and digital healthcare data has created a demand for data-driven insights to enhance patient outcomes, diagnostics, and treatments. However, using real patient data presents privacy and regulatory challenges, including compliance with HIPAA and GDPR. Synthetic data generation, using generative AI models like GANs and VAEs offers a promising solution to balance valuable data access and patient privacy protection. In this paper, we examine generative AI models for creating realistic, anonymized patient data for research and training, explore synthetic data applications in healthcare, and discuss its benefits, challenges, and future research directions. Synthetic data has the potential to revolutionize healthcare by providing anonymized patient data while preserving privacy and enabling versatile applications.
DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing
The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.
PLM-ICD: Automatic ICD Coding with Pretrained Language Models
Automatically classifying electronic health records (EHRs) into diagnostic codes has been challenging to the NLP community. State-of-the-art methods treated this problem as a multilabel classification problem and proposed various architectures to model this problem. However, these systems did not leverage the superb performance of pretrained language models, which achieved superb performance on natural language understanding tasks. Prior work has shown that pretrained language models underperformed on this task with the regular finetuning scheme. Therefore, this paper aims at analyzing the causes of the underperformance and developing a framework for automatic ICD coding with pretrained language models. We spotted three main issues through the experiments: 1) large label space, 2) long input sequences, and 3) domain mismatch between pretraining and fine-tuning. We propose PLMICD, a framework that tackles the challenges with various strategies. The experimental results show that our proposed framework can overcome the challenges and achieves state-of-the-art performance in terms of multiple metrics on the benchmark MIMIC data. The source code is available at https://github.com/MiuLab/PLM-ICD
The Fishnet Open Images Database: A Dataset for Fish Detection and Fine-Grained Categorization in Fisheries
Camera-based electronic monitoring (EM) systems are increasingly being deployed onboard commercial fishing vessels to collect essential data for fisheries management and regulation. These systems generate large quantities of video data which must be reviewed on land by human experts. Computer vision can assist this process by automatically detecting and classifying fish species, however the lack of existing public data in this domain has hindered progress. To address this, we present the Fishnet Open Images Database, a large dataset of EM imagery for fish detection and fine-grained categorization onboard commercial fishing vessels. The dataset consists of 86,029 images containing 34 object classes, making it the largest and most diverse public dataset of fisheries EM imagery to-date. It includes many of the characteristic challenges of EM data: visual similarity between species, skewed class distributions, harsh weather conditions, and chaotic crew activity. We evaluate the performance of existing detection and classification algorithms and demonstrate that the dataset can serve as a challenging benchmark for development of computer vision algorithms in fisheries. The dataset is available at https://www.fishnet.ai/.
Automatic end-to-end De-identification: Is high accuracy the only metric?
De-identification of electronic health records (EHR) is a vital step towards advancing health informatics research and maximising the use of available data. It is a two-step process where step one is the identification of protected health information (PHI), and step two is replacing such PHI with surrogates. Despite the recent advances in automatic de-identification of EHR, significant obstacles remain if the abundant health data available are to be used to the full potential. Accuracy in de-identification could be considered a necessary, but not sufficient condition for the use of EHR without individual patient consent. We present here a comprehensive review of the progress to date, both the impressive successes in achieving high accuracy and the significant risks and challenges that remain. To best of our knowledge, this is the first paper to present a complete picture of end-to-end automatic de-identification. We review 18 recently published automatic de-identification systems -designed to de-identify EHR in the form of free text- to show the advancements made in improving the overall accuracy of the system, and in identifying individual PHI. We argue that despite the improvements in accuracy there remain challenges in surrogate generation and replacements of identified PHIs, and the risks posed to patient protection and privacy.
Measuring the Stability of EHR- and EKG-based Predictive Models
Databases of electronic health records (EHRs) are increasingly used to inform clinical decisions. Machine learning methods can find patterns in EHRs that are predictive of future adverse outcomes. However, statistical models may be built upon patterns of health-seeking behavior that vary across patient subpopulations, leading to poor predictive performance when training on one patient population and predicting on another. This note proposes two tests to better measure and understand model generalization. We use these tests to compare models derived from two data sources: (i) historical medical records, and (ii) electrocardiogram (EKG) waveforms. In a predictive task, we show that EKG-based models can be more stable than EHR-based models across different patient populations.
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Potential and Limitation of High-Frequency Cores and Caches
This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.
PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals
Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.
Invited Article: miniTimeCube
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% ^{10}B - doped scintillator (13 cm)^3 cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8times8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) nuclear reactor (20 MW_th) in Gaithersburg, MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC's improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.
Question Answering on Patient Medical Records with Private Fine-Tuned LLMs
Healthcare systems continuously generate vast amounts of electronic health records (EHRs), commonly stored in the Fast Healthcare Interoperability Resources (FHIR) standard. Despite the wealth of information in these records, their complexity and volume make it difficult for users to retrieve and interpret crucial health insights. Recent advances in Large Language Models (LLMs) offer a solution, enabling semantic question answering (QA) over medical data, allowing users to interact with their health records more effectively. However, ensuring privacy and compliance requires edge and private deployments of LLMs. This paper proposes a novel approach to semantic QA over EHRs by first identifying the most relevant FHIR resources for a user query (Task1) and subsequently answering the query based on these resources (Task2). We explore the performance of privately hosted, fine-tuned LLMs, evaluating them against benchmark models such as GPT-4 and GPT-4o. Our results demonstrate that fine-tuned LLMs, while 250x smaller in size, outperform GPT-4 family models by 0.55% in F1 score on Task1 and 42% on Meteor Task in Task2. Additionally, we examine advanced aspects of LLM usage, including sequential fine-tuning, model self-evaluation (narcissistic evaluation), and the impact of training data size on performance. The models and datasets are available here: https://huggingface.co/genloop
Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs
Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues
PCB-Vision: A Multiscene RGB-Hyperspectral Benchmark Dataset of Printed Circuit Boards
Addressing the critical theme of recycling electronic waste (E-waste), this contribution is dedicated to developing advanced automated data processing pipelines as a basis for decision-making and process control. Aligning with the broader goals of the circular economy and the United Nations (UN) Sustainable Development Goals (SDG), our work leverages non-invasive analysis methods utilizing RGB and hyperspectral imaging data to provide both quantitative and qualitative insights into the E-waste stream composition for optimizing recycling efficiency. In this paper, we introduce 'PCB-Vision'; a pioneering RGB-hyperspectral printed circuit board (PCB) benchmark dataset, comprising 53 RGB images of high spatial resolution paired with their corresponding high spectral resolution hyperspectral data cubes in the visible and near-infrared (VNIR) range. Grounded in open science principles, our dataset provides a comprehensive resource for researchers through high-quality ground truths, focusing on three primary PCB components: integrated circuits (IC), capacitors, and connectors. We provide extensive statistical investigations on the proposed dataset together with the performance of several state-of-the-art (SOTA) models, including U-Net, Attention U-Net, Residual U-Net, LinkNet, and DeepLabv3+. By openly sharing this multi-scene benchmark dataset along with the baseline codes, we hope to foster transparent, traceable, and comparable developments of advanced data processing across various scientific communities, including, but not limited to, computer vision and remote sensing. Emphasizing our commitment to supporting a collaborative and inclusive scientific community, all materials, including code, data, ground truth, and masks, will be accessible at https://github.com/hifexplo/PCBVision.
ChatEDA: A Large Language Model Powered Autonomous Agent for EDA
The integration of a complex set of Electronic Design Automation (EDA) tools to enhance interoperability is a critical concern for circuit designers. Recent advancements in large language models (LLMs) have showcased their exceptional capabilities in natural language processing and comprehension, offering a novel approach to interfacing with EDA tools. This research paper introduces ChatEDA, an autonomous agent for EDA empowered by a large language model, AutoMage, complemented by EDA tools serving as executors. ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task planning, script generation, and task execution. Through comprehensive experimental evaluations, ChatEDA has demonstrated its proficiency in handling diverse requirements, and our fine-tuned AutoMage model has exhibited superior performance compared to GPT-4 and other similar LLMs.
Evaluation of Popular XAI Applied to Clinical Prediction Models: Can They be Trusted?
The absence of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. Although various methods of explainable artificial intelligence (XAI) have been suggested, there is a lack of literature that delves into their practicality and assesses them based on criteria that could foster trust in clinical environments. To address this gap this study evaluates two popular XAI methods used for explaining predictive models in the healthcare context in terms of whether they (i) generate domain-appropriate representation, i.e. coherent with respect to the application task, (ii) impact clinical workflow and (iii) are consistent. To that end, explanations generated at the cohort and patient levels were analysed. The paper reports the first benchmarking of the XAI methods applied to risk prediction models obtained by evaluating the concordance between generated explanations and the trigger of a future clinical deterioration episode recorded by the data collection system. We carried out an analysis using two Electronic Medical Records (EMR) datasets sourced from Australian major hospitals. The findings underscore the limitations of state-of-the-art XAI methods in the clinical context and their potential benefits. We discuss these limitations and contribute to the theoretical development of trustworthy XAI solutions where clinical decision support guides the choice of intervention by suggesting the pattern or drivers for clinical deterioration in the future.
Deep Open-Set Recognition for Silicon Wafer Production Monitoring
The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.
Deep Learning Based Defect Detection for Solder Joints on Industrial X-Ray Circuit Board Images
Quality control is of vital importance during electronics production. As the methods of producing electronic circuits improve, there is an increasing chance of solder defects during assembling the printed circuit board (PCB). Many technologies have been incorporated for inspecting failed soldering, such as X-ray imaging, optical imaging, and thermal imaging. With some advanced algorithms, the new technologies are expected to control the production quality based on the digital images. However, current algorithms sometimes are not accurate enough to meet the quality control. Specialists are needed to do a follow-up checking. For automated X-ray inspection, joint of interest on the X-ray image is located by region of interest (ROI) and inspected by some algorithms. Some incorrect ROIs deteriorate the inspection algorithm. The high dimension of X-ray images and the varying sizes of image dimensions also challenge the inspection algorithms. On the other hand, recent advances on deep learning shed light on image-based tasks and are competitive to human levels. In this paper, deep learning is incorporated in X-ray imaging based quality control during PCB quality inspection. Two artificial intelligence (AI) based models are proposed and compared for joint defect detection. The noised ROI problem and the varying sizes of imaging dimension problem are addressed. The efficacy of the proposed methods are verified through experimenting on a real-world 3D X-ray dataset. By incorporating the proposed methods, specialist inspection workload is largely saved.
Improving Yorùbá Diacritic Restoration
Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology.
A Corpus for Detecting High-Context Medical Conditions in Intensive Care Patient Notes Focusing on Frequently Readmitted Patients
A crucial step within secondary analysis of electronic health records (EHRs) is to identify the patient cohort under investigation. While EHRs contain medical billing codes that aim to represent the conditions and treatments patients may have, much of the information is only present in the patient notes. Therefore, it is critical to develop robust algorithms to infer patients' conditions and treatments from their written notes. In this paper, we introduce a dataset for patient phenotyping, a task that is defined as the identification of whether a patient has a given medical condition (also referred to as clinical indication or phenotype) based on their patient note. Nursing Progress Notes and Discharge Summaries from the Intensive Care Unit of a large tertiary care hospital were manually annotated for the presence of several high-context phenotypes relevant to treatment and risk of re-hospitalization. This dataset contains 1102 Discharge Summaries and 1000 Nursing Progress Notes. Each Discharge Summary and Progress Note has been annotated by at least two expert human annotators (one clinical researcher and one resident physician). Annotated phenotypes include treatment non-adherence, chronic pain, advanced/metastatic cancer, as well as 10 other phenotypes. This dataset can be utilized for academic and industrial research in medicine and computer science, particularly within the field of medical natural language processing.
Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.
SAGE-HLS: Syntax-Aware AST-Guided LLM for High-Level Synthesis Code Generation
In today's rapidly evolving field of electronic design automation (EDA), the complexity of hardware designs is increasing, necessitating more sophisticated automation solutions. High-level synthesis (HLS), as a pivotal solution, automates hardware designs from high-level abstractions (e.g., C/C++). However, it faces significant challenges, particularly in design space exploration and optimization. While large language models (LLMs) have shown notable capabilities in code generation, their application to HLS has been limited due to the scarcity of (publicly) available HLS code datasets. Hence, research in this domain has primarily focused on techniques such as prompt engineering and retrieval-augmented generation (RAG). To overcome this limitation, this paper introduces SAGE-HLS, the first-of-its-kind fine-tuned LLM specifically for HLS code generation. Our method includes three key advancements: (i) We implement Verilog-to-C/C++ porting, converting verified and synthesizable Verilog codes into corresponding C, creating a dataset of 16.7K HLS codes; (ii) We implement a fine-tuning strategy, which is based on instruction prompting to code generation guided by abstract syntax tree (AST); (iii) We develop a semi-automated evaluation framework using VerilogEval to assess the functionality of the generated HLS code. Our experiments show that SAGE-HLS, fined-tuned on the QwenCoder (2.5) 7B model, achieves a near 100% success rate in code synthesizability and a 75% success rate in functional correctness.
Quantifying chemical short-range order in metallic alloys
Metallic alloys often form phases - known as solid solutions - in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO) and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due to their extreme configurational complexity (e.g., high-entropy alloys). Short-range order renders solid solutions "slightly less random than completely random", which is a physically intuitive picture, but not easily quantifiable due to the sheer number of possible chemical motifs and their subtle spatial distribution on the lattice. Here we present a multiscale method to predict and quantify the SRO state of an alloy with atomic resolution, incorporating machine learning techniques to bridge the gap between electronic-structure calculations and the characteristic length scale of SRO. The result is an approach capable of predicting SRO length scale in agreement with experimental measurements while comprehensively correlating SRO with fundamental quantities such as local lattice distortions. This work advances the quantitative understanding of solid-solution phases, paving the way for SRO rigorous incorporation into predictive mechanical and thermodynamic models.
GraphCare: Enhancing Healthcare Predictions with Personalized Knowledge Graphs
Clinical predictive models often rely on patients' electronic health records (EHR), but integrating medical knowledge to enhance predictions and decision-making is challenging. This is because personalized predictions require personalized knowledge graphs (KGs), which are difficult to generate from patient EHR data. To address this, we propose GraphCare, an open-world framework that uses external KGs to improve EHR-based predictions. Our method extracts knowledge from large language models (LLMs) and external biomedical KGs to build patient-specific KGs, which are then used to train our proposed Bi-attention AugmenTed (BAT) graph neural network (GNN) for healthcare predictions. On two public datasets, MIMIC-III and MIMIC-IV, GraphCare surpasses baselines in four vital healthcare prediction tasks: mortality, readmission, length of stay (LOS), and drug recommendation. On MIMIC-III, it boosts AUROC by 17.6\% and 6.6\% for mortality and readmission, and F1-score by 7.9\% and 10.8\% for LOS and drug recommendation, respectively. Notably, GraphCare demonstrates a substantial edge in scenarios with limited data availability. Our findings highlight the potential of using external KGs in healthcare prediction tasks and demonstrate the promise of GraphCare in generating personalized KGs for promoting personalized medicine.
First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2
Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
Generalizing Neural Wave Functions
Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned orbital embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. Globe learns representations of local electronic structures that generalize across molecules via spatial message passing by connecting molecular orbitals to covalent bonds. Further, we propose a size-consistent wave function Ansatz, the Molecular orbital network (Moon), tailored to jointly solve Schr\"odinger equations of different molecules. In our experiments, we find Moon converging in 4.5 times fewer steps to similar accuracy as previous methods or to lower energies given the same time. Further, our analysis shows that Moon's energy estimate scales additively with increased system sizes, unlike previous work where we observe divergence. In both computational chemistry and machine learning, we are the first to demonstrate that a single wave function can solve the Schr\"odinger equation of molecules with different atoms jointly.
Bootstrap Embedding on a Quantum Computer
We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match -- at little additional computational cost -- full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching.
Modeling Diagnostic Label Correlation for Automatic ICD Coding
Given the clinical notes written in electronic health records (EHRs), it is challenging to predict the diagnostic codes which is formulated as a multi-label classification task. The large set of labels, the hierarchical dependency, and the imbalanced data make this prediction task extremely hard. Most existing work built a binary prediction for each label independently, ignoring the dependencies between labels. To address this problem, we propose a two-stage framework to improve automatic ICD coding by capturing the label correlation. Specifically, we train a label set distribution estimator to rescore the probability of each label set candidate generated by a base predictor. This paper is the first attempt at learning the label set distribution as a reranking module for medical code prediction. In the experiments, our proposed framework is able to improve upon best-performing predictors on the benchmark MIMIC datasets. The source code of this project is available at https://github.com/MiuLab/ICD-Correlation.
Products-10K: A Large-scale Product Recognition Dataset
With the rapid development of electronic commerce, the way of shopping has experienced a revolutionary evolution. To fully meet customers' massive and diverse online shopping needs with quick response, the retailing AI system needs to automatically recognize products from images and videos at the stock-keeping unit (SKU) level with high accuracy. However, product recognition is still a challenging task, since many of SKU-level products are fine-grained and visually similar by a rough glimpse. Although there are already some products benchmarks available, these datasets are either too small (limited number of products) or noisy-labeled (lack of human labeling). In this paper, we construct a human-labeled product image dataset named "Products-10K", which contains 10,000 fine-grained SKU-level products frequently bought by online customers in JD.com. Based on our new database, we also introduced several useful tips and tricks for fine-grained product recognition. The products-10K dataset is available via https://products-10k.github.io/.
Pre-training A Neural Language Model Improves The Sample Efficiency of an Emergency Room Classification Model
To build a French national electronic injury surveillance system based on emergency room visits, we aim to develop a coding system to classify their causes from clinical notes in free-text. Supervised learning techniques have shown good results in this area but require a large amount of expert annotated dataset which is time consuming and costly to obtain. We hypothesize that the Natural Language Processing Transformer model incorporating a generative self-supervised pre-training step can significantly reduce the required number of annotated samples for supervised fine-tuning. In this preliminary study, we test our hypothesis in the simplified problem of predicting whether a visit is the consequence of a traumatic event or not from free-text clinical notes. Using fully re-trained GPT-2 models (without OpenAI pre-trained weights), we assess the gain of applying a self-supervised pre-training phase with unlabeled notes prior to the supervised learning task. Results show that the number of data required to achieve a ginve level of performance (AUC>0.95) was reduced by a factor of 10 when applying pre-training. Namely, for 16 times more data, the fully-supervised model achieved an improvement <1% in AUC. To conclude, it is possible to adapt a multi-purpose neural language model such as the GPT-2 to create a powerful tool for classification of free-text notes with only a small number of labeled samples.
Deep Learning with Coherent Nanophotonic Circuits
Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.
Accelerating Materials Design via LLM-Guided Evolutionary Search
Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA
Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks
This paper presents T3: Transferable Tactile Transformers, a framework for tactile representation learning that scales across multi-sensors and multi-tasks. T3 is designed to overcome the contemporary issue that camera-based tactile sensing is extremely heterogeneous, i.e. sensors are built into different form factors, and existing datasets were collected for disparate tasks. T3 captures the shared latent information across different sensor-task pairings by constructing a shared trunk transformer with sensor-specific encoders and task-specific decoders. The pre-training of T3 utilizes a novel Foundation Tactile (FoTa) dataset, which is aggregated from several open-sourced datasets and it contains over 3 million data points gathered from 13 sensors and 11 tasks. FoTa is the largest and most diverse dataset in tactile sensing to date and it is made publicly available in a unified format. Across various sensors and tasks, experiments show that T3 pre-trained with FoTa achieved zero-shot transferability in certain sensor-task pairings, can be further fine-tuned with small amounts of domain-specific data, and its performance scales with bigger network sizes. T3 is also effective as a tactile encoder for long horizon contact-rich manipulation. Results from sub-millimeter multi-pin electronics insertion tasks show that T3 achieved a task success rate 25% higher than that of policies trained with tactile encoders trained from scratch, or 53% higher than without tactile sensing. Data, code, and model checkpoints are open-sourced at https://t3.alanz.info.
Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes
In manufacturing sectors such as textiles and electronics, manual processes are a fundamental part of production. The analysis and monitoring of the processes is necessary for efficient production design. Traditional methods for analyzing manual processes are complex, expensive, and inflexible. Compared to established approaches such as Methods-Time-Measurement (MTM), machine learning (ML) methods promise: Higher flexibility, self-sufficient & permanent use, lower costs. In this work, based on a video stream, the current motion class in a manual assembly process is detected. With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily. A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks. For skeleton-based action recognition in manual assembly, no sufficient pre-work could be found. Therefore, a ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets. Suitable well generalizing approaches are found, proving the potential of ML to enhance analyzation of manual processes. Models detect the current motion, performed by an operator in manual assembly, but the results can be transferred to all kinds of manual processes.
The impact of using an AI chatbot to respond to patient messages
Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation.
PCB-Fire: Automated Classification and Fault Detection in PCB
Printed Circuit Boards are the foundation for the functioning of any electronic device, and therefore are an essential component for various industries such as automobile, communication, computation, etc. However, one of the challenges faced by the PCB manufacturers in the process of manufacturing of the PCBs is the faulty placement of its components including missing components. In the present scenario the infrastructure required to ensure adequate quality of the PCB requires a lot of time and effort. The authors present a novel solution for detecting missing components and classifying them in a resourceful manner. The presented algorithm focuses on pixel theory and object detection, which has been used in combination to optimize the results from the given dataset.
Progress Note Understanding -- Assessment and Plan Reasoning: Overview of the 2022 N2C2 Track 3 Shared Task
Daily progress notes are common types in the electronic health record (EHR) where healthcare providers document the patient's daily progress and treatment plans. The EHR is designed to document all the care provided to patients, but it also enables note bloat with extraneous information that distracts from the diagnoses and treatment plans. Applications of natural language processing (NLP) in the EHR is a growing field with the majority of methods in information extraction. Few tasks use NLP methods for downstream diagnostic decision support. We introduced the 2022 National NLP Clinical Challenge (N2C2) Track 3: Progress Note Understanding - Assessment and Plan Reasoning as one step towards a new suite of tasks. The Assessment and Plan Reasoning task focuses on the most critical components of progress notes, Assessment and Plan subsections where health problems and diagnoses are contained. The goal of the task was to develop and evaluate NLP systems that automatically predict causal relations between the overall status of the patient contained in the Assessment section and its relation to each component of the Plan section which contains the diagnoses and treatment plans. The goal of the task was to identify and prioritize diagnoses as the first steps in diagnostic decision support to find the most relevant information in long documents like daily progress notes. We present the results of 2022 n2c2 Track 3 and provide a description of the data, evaluation, participation and system performance.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
Reinforcement Learning for Hardware Security: Opportunities, Developments, and Challenges
Reinforcement learning (RL) is a machine learning paradigm where an autonomous agent learns to make an optimal sequence of decisions by interacting with the underlying environment. The promise demonstrated by RL-guided workflows in unraveling electronic design automation problems has encouraged hardware security researchers to utilize autonomous RL agents in solving domain-specific problems. From the perspective of hardware security, such autonomous agents are appealing as they can generate optimal actions in an unknown adversarial environment. On the other hand, the continued globalization of the integrated circuit supply chain has forced chip fabrication to off-shore, untrustworthy entities, leading to increased concerns about the security of the hardware. Furthermore, the unknown adversarial environment and increasing design complexity make it challenging for defenders to detect subtle modifications made by attackers (a.k.a. hardware Trojans). In this brief, we outline the development of RL agents in detecting hardware Trojans, one of the most challenging hardware security problems. Additionally, we outline potential opportunities and enlist the challenges of applying RL to solve hardware security problems.
An Integrated Optimization and Machine Learning Models to Predict the Admission Status of Emergency Patients
This work proposes a framework for optimizing machine learning algorithms. The practicality of the framework is illustrated using an important case study from the healthcare domain, which is predicting the admission status of emergency department (ED) patients (e.g., admitted vs. discharged) using patient data at the time of triage. The proposed framework can mitigate the crowding problem by proactively planning the patient boarding process. A large retrospective dataset of patient records is obtained from the electronic health record database of all ED visits over three years from three major locations of a healthcare provider in the Midwest of the US. Three machine learning algorithms are proposed: T-XGB, T-ADAB, and T-MLP. T-XGB integrates extreme gradient boosting (XGB) and Tabu Search (TS), T-ADAB integrates Adaboost and TS, and T-MLP integrates multi-layer perceptron (MLP) and TS. The proposed algorithms are compared with the traditional algorithms: XGB, ADAB, and MLP, in which their parameters are tunned using grid search. The three proposed algorithms and the original ones are trained and tested using nine data groups that are obtained from different feature selection methods. In other words, 54 models are developed. Performance was evaluated using five measures: Area under the curve (AUC), sensitivity, specificity, F1, and accuracy. The results show that the newly proposed algorithms resulted in high AUC and outperformed the traditional algorithms. The T-ADAB performs the best among the newly developed algorithms. The AUC, sensitivity, specificity, F1, and accuracy of the best model are 95.4%, 99.3%, 91.4%, 95.2%, 97.2%, respectively.
GERNERMED -- An Open German Medical NER Model
The current state of adoption of well-structured electronic health records and integration of digital methods for storing medical patient data in structured formats can often considered as inferior compared to the use of traditional, unstructured text based patient data documentation. Data mining in the field of medical data analysis often needs to rely solely on processing of unstructured data to retrieve relevant data. In natural language processing (NLP), statistical models have been shown successful in various tasks like part-of-speech tagging, relation extraction (RE) and named entity recognition (NER). In this work, we present GERNERMED, the first open, neural NLP model for NER tasks dedicated to detect medical entity types in German text data. Here, we avoid the conflicting goals of protection of sensitive patient data from training data extraction and the publication of the statistical model weights by training our model on a custom dataset that was translated from publicly available datasets in foreign language by a pretrained neural machine translation model. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED
Co-Transport for Class-Incremental Learning
Traditional learning systems are trained in closed-world for a fixed number of classes, and need pre-collected datasets in advance. However, new classes often emerge in real-world applications and should be learned incrementally. For example, in electronic commerce, new types of products appear daily, and in a social media community, new topics emerge frequently. Under such circumstances, incremental models should learn several new classes at a time without forgetting. We find a strong correlation between old and new classes in incremental learning, which can be applied to relate and facilitate different learning stages mutually. As a result, we propose CO-transport for class Incremental Learning (COIL), which learns to relate across incremental tasks with the class-wise semantic relationship. In detail, co-transport has two aspects: prospective transport tries to augment the old classifier with optimal transported knowledge as fast model adaptation. Retrospective transport aims to transport new class classifiers backward as old ones to overcome forgetting. With these transports, COIL efficiently adapts to new tasks, and stably resists forgetting. Experiments on benchmark and real-world multimedia datasets validate the effectiveness of our proposed method.
The enigma of the pseudogap phase of the cuprate superconductors
The last few years have seen significant experimental progress in characterizing the copper-based hole-doped high temperature superconductors in the regime of low hole density, p. Quantum oscillations, NMR, X-ray, and STM experiments have shed much light on the nature of the ordering at low temperatures. We review evidence that the order parameter in the non-Lanthanum-based cuprates is a d-form factor density-wave. This novel order acts as an unexpected window into the electronic structure of the pseudogap phase at higher temperatures in zero field: we argue in favor of a `fractionalized Fermi liquid' (FL*) with 4 pockets of spin S=1/2, charge +e fermions enclosing an area specified by p.
