Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents
The rapid advancement of Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures. Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors. This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic workflows effectively. Through a comprehensive analysis of existing API design paradigms, agent interaction models, and emerging technological constraints, the paper develops a strategic framework for API transformation. The study employs a mixed-method approach, combining theoretical modeling, comparative analysis, and exploratory design principles to address critical challenges in standardization, performance, and intelligent interaction. The proposed research contributes a conceptual model for next-generation enterprise APIs that can seamlessly integrate with autonomous AI agent ecosystems, offering significant implications for future enterprise computing architectures.
Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200
Towards Enterprise-Ready Computer Using Generalist Agent
This paper presents our ongoing work toward developing an enterprise-ready Computer Using Generalist Agent (CUGA) system. Our research highlights the evolutionary nature of building agentic systems suitable for enterprise environments. By integrating state-of-the-art agentic AI techniques with a systematic approach to iterative evaluation, analysis, and refinement, we have achieved rapid and cost-effective performance gains, notably reaching a new state-of-the-art performance on the WebArena benchmark. We detail our development roadmap, the methodology and tools that facilitated rapid learning from failures and continuous system refinement, and discuss key lessons learned and future challenges for enterprise adoption.
Routine: A Structural Planning Framework for LLM Agent System in Enterprise
The deployment of agent systems in an enterprise environment is often hindered by several challenges: common models lack domain-specific process knowledge, leading to disorganized plans, missing key tools, and poor execution stability. To address this, this paper introduces Routine, a multi-step agent planning framework designed with a clear structure, explicit instructions, and seamless parameter passing to guide the agent's execution module in performing multi-step tool-calling tasks with high stability. In evaluations conducted within a real-world enterprise scenario, Routine significantly increases the execution accuracy in model tool calls, increasing the performance of GPT-4o from 41.1% to 96.3%, and Qwen3-14B from 32.6% to 83.3%. We further constructed a Routine-following training dataset and fine-tuned Qwen3-14B, resulting in an accuracy increase to 88.2% on scenario-specific evaluations, indicating improved adherence to execution plans. In addition, we employed Routine-based distillation to create a scenario-specific, multi-step tool-calling dataset. Fine-tuning on this distilled dataset raised the model's accuracy to 95.5%, approaching GPT-4o's performance. These results highlight Routine's effectiveness in distilling domain-specific tool-usage patterns and enhancing model adaptability to new scenarios. Our experimental results demonstrate that Routine provides a practical and accessible approach to building stable agent workflows, accelerating the deployment and adoption of agent systems in enterprise environments, and advancing the technical vision of AI for Process.
FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance
Enterprise Resource Planning (ERP) systems serve as the digital backbone of modern financial institutions, yet they continue to rely on static, rule-based workflows that limit adaptability, scalability, and intelligence. As business operations grow more complex and data-rich, conventional ERP platforms struggle to integrate structured and unstructured data in real time and to accommodate dynamic, cross-functional workflows. In this paper, we present the first AI-native, agent-based framework for ERP systems, introducing a novel architecture of Generative Business Process AI Agents (GBPAs) that bring autonomy, reasoning, and dynamic optimization to enterprise workflows. The proposed system integrates generative AI with business process modeling and multi-agent orchestration, enabling end-to-end automation of complex tasks such as budget planning, financial reporting, and wire transfer processing. Unlike traditional workflow engines, GBPAs interpret user intent, synthesize workflows in real time, and coordinate specialized sub-agents for modular task execution. We validate the framework through case studies in bank wire transfers and employee reimbursements, two representative financial workflows with distinct complexity and data modalities. Results show that GBPAs achieve up to 40% reduction in processing time, 94% drop in error rate, and improved regulatory compliance by enabling parallelism, risk control insertion, and semantic reasoning. These findings highlight the potential of GBPAs to bridge the gap between generative AI capabilities and enterprise-grade automation, laying the groundwork for the next generation of intelligent ERP systems.
Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows?
Data science and engineering workflows often span multiple stages, from warehousing to orchestration, using tools like BigQuery, dbt, and Airbyte. As vision language models (VLMs) advance in multimodal understanding and code generation, VLM-based agents could potentially automate these workflows by generating SQL queries, Python code, and GUI operations. This automation can improve the productivity of experts while democratizing access to large-scale data analysis. In this paper, we introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering workflows, featuring 494 real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications. These tasks, derived from real-world use cases, evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems. To balance realistic simulation with evaluation simplicity, we devote significant effort to developing automatic configurations for task setup and carefully crafting evaluation metrics for each task. Furthermore, we supplement multimodal agents with comprehensive documents of these enterprise data software systems. Our empirical evaluation reveals that existing state-of-the-art LLM/VLM-based agents do not reliably automate full data workflows (14.0% success). Even with step-by-step guidance, these agents still underperform in tasks that require fine-grained, knowledge-intensive GUI actions (16.2%) and involve remote cloud-hosted workspaces (10.6%). We hope that Spider2-V paves the way for autonomous multimodal agents to transform the automation of data science and engineering workflow. Our code and data are available at https://spider2-v.github.io.
Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems
AI Agents are changing the way work gets done, both in consumer and enterprise domains. However, the design patterns and architectures to build highly capable agents or multi-agent systems are still developing, and the understanding of the implication of various design choices and algorithms is still evolving. In this paper, we present our work on building a novel web agent, Agent-E Our code is available at \url{https://github.com/EmergenceAI/Agent-E}. Agent-E introduces numerous architectural improvements over prior state-of-the-art web agents such as hierarchical architecture, flexible DOM distillation and denoising method, and the concept of change observation to guide the agent towards more accurate performance. We first present the results of an evaluation of Agent-E on WebVoyager benchmark dataset and show that Agent-E beats other SOTA text and multi-modal web agents on this benchmark in most categories by 10-30\%. We then synthesize our learnings from the development of Agent-E into general design principles for developing agentic systems. These include the use of domain-specific primitive skills, the importance of distillation and de-noising of environmental observations, the advantages of a hierarchical architecture, and the role of agentic self-improvement to enhance agent efficiency and efficacy as the agent gathers experience.
A novel strategy for multi-resource load balancing in agent-based systems
The paper presents a multi-resource load balancing strategy which can be utilised within an agent-based system. This approach can assist system designers in their attempts to optimise the structure for complex enterprise architectures. In this system, the social behaviour of the agent and its adaptation abilities are applied to determine an optimal setup for a given configuration. All the methods have been developed to allow the agent's self-assessment. The proposed agent system has been implemented and the experiment results are presented here.
AI Agents: Evolution, Architecture, and Real-World Applications
This paper examines the evolution, architecture, and practical applications of AI agents from their early, rule-based incarnations to modern sophisticated systems that integrate large language models with dedicated modules for perception, planning, and tool use. Emphasizing both theoretical foundations and real-world deployments, the paper reviews key agent paradigms, discusses limitations of current evaluation benchmarks, and proposes a holistic evaluation framework that balances task effectiveness, efficiency, robustness, and safety. Applications across enterprise, personal assistance, and specialized domains are analyzed, with insights into future research directions for more resilient and adaptive AI agent systems.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuring the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 29 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities
Modern enterprise environments demand intelligent systems capable of handling complex, dynamic, and multi-faceted tasks with high levels of autonomy and adaptability. However, traditional single-purpose AI systems often lack sufficient coordination, memory reuse, and task decomposition capabilities, limiting their scalability in realistic settings. To address these challenges, we present GoalfyMax, a protocol-driven framework for end-to-end multi-agent collaboration. GoalfyMax introduces a standardized Agent-to-Agent (A2A) communication layer built on the Model Context Protocol (MCP), allowing independent agents to coordinate through asynchronous, protocol-compliant interactions. It incorporates the Experience Pack (XP) architecture, a layered memory system that preserves both task rationales and execution traces, enabling structured knowledge retention and continual learning. Moreover, our system integrates advanced features including multi-turn contextual dialogue, long-short term memory modules, and dynamic safety validation, supporting robust, real-time strategy adaptation. Empirical results on complex task orchestration benchmarks and case study demonstrate that GoalfyMax achieves superior adaptability, coordination, and experience reuse compared to baseline frameworks. These findings highlight its potential as a scalable, future-ready foundation for multi-agent intelligent systems.
Agentic Software Engineering: Foundational Pillars and a Research Roadmap
Agentic Software Engineering (SE 3.0) represents a new era where intelligent agents are tasked not with simple code generation, but with achieving complex, goal-oriented SE objectives. To harness these new capabilities while ensuring trustworthiness, we must recognize a fundamental duality within the SE field in the Agentic SE era, comprising two symbiotic modalities: SE for Humans and SE for Agents. This duality demands a radical reimagining of the foundational pillars of SE (actors, processes, tools, and artifacts) which manifest differently across each modality. We propose two purpose-built workbenches to support this vision. The Agent Command Environment (ACE) serves as a command center where humans orchestrate and mentor agent teams, handling outputs such as Merge-Readiness Packs (MRPs) and Consultation Request Packs (CRPs). The Agent Execution Environment (AEE) is a digital workspace where agents perform tasks while invoking human expertise when facing ambiguity or complex trade-offs. This bi-directional partnership, which supports agent-initiated human callbacks and handovers, gives rise to new, structured engineering activities (i.e., processes) that redefine human-AI collaboration, elevating the practice from agentic coding to true agentic software engineering. This paper presents the Structured Agentic Software Engineering (SASE) vision, outlining several of the foundational pillars for the future of SE. The paper culminates in a research roadmap that identifies a few key challenges and opportunities while briefly discussing the resulting impact of this future on SE education. Our goal is not to offer a definitive solution, but to provide a conceptual scaffold with structured vocabulary to catalyze a community-wide dialogue, pushing the SE community to think beyond its classic, human-centric tenets toward a disciplined, scalable, and trustworthy agentic future.
Efficient Agent Training for Computer Use
Scaling up high-quality trajectory data has long been a critical bottleneck for developing human-like computer use agents. We introduce PC Agent-E, an efficient agent training framework that significantly reduces reliance on large-scale human demonstrations. Starting with just 312 human-annotated computer use trajectories, we further improved data quality by synthesizing diverse action decisions with Claude 3.7 Sonnet. Trained on these enriched trajectories, our PC Agent-E model achieved a remarkable 141% relative improvement, surpassing the strong Claude 3.7 Sonnet with extended thinking on WindowsAgentArena-V2, an improved benchmark we also released. Furthermore, PC Agent-E demonstrates strong generalizability to different operating systems on OSWorld. Our findings suggest that strong computer use capabilities can be stimulated from a small amount of high-quality trajectory data.
HyperAgent: Generalist Software Engineering Agents to Solve Coding Tasks at Scale
Large Language Models (LLMs) have revolutionized software engineering (SE), demonstrating remarkable capabilities in various coding tasks. While recent efforts have produced autonomous software agents based on LLMs for end-to-end development tasks, these systems are typically designed for specific SE tasks. We introduce HyperAgent, a novel generalist multi-agent system designed to address a wide spectrum of SE tasks across different programming languages by mimicking human developers' workflows. Comprising four specialized agents - Planner, Navigator, Code Editor, and Executor. HyperAgent manages the full lifecycle of SE tasks, from initial conception to final verification. Through extensive evaluations, HyperAgent achieves state-of-the-art performance across diverse SE tasks: it attains a 25.01% success rate on SWE-Bench-Lite and 31.40% on SWE-Bench-Verified for GitHub issue resolution, surpassing existing methods. Furthermore, HyperAgent demonstrates SOTA performance in repository-level code generation (RepoExec), and in fault localization and program repair (Defects4J), often outperforming specialized systems. This work represents a significant advancement towards versatile, autonomous agents capable of handling complex, multi-step SE tasks across various domains and languages, potentially transforming AI-assisted software development practices.
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks
The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recent LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress toward capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena/tree/workarena-plus-plus.
OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.
CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments
Customer Relationship Management (CRM) systems are vital for modern enterprises, providing a foundation for managing customer interactions and data. Integrating AI agents into CRM systems can automate routine processes and enhance personalized service. However, deploying and evaluating these agents is challenging due to the lack of realistic benchmarks that reflect the complexity of real-world CRM tasks. To address this issue, we introduce CRMArena, a novel benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments. Following guidance from CRM experts and industry best practices, we designed CRMArena with nine customer service tasks distributed across three personas: service agent, analyst, and manager. The benchmark includes 16 commonly used industrial objects (e.g., account, order, knowledge article, case) with high interconnectivity, along with latent variables (e.g., complaint habits, policy violations) to simulate realistic data distributions. Experimental results reveal that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities. Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments. CRMArena is an open challenge to the community: systems that can reliably complete tasks showcase direct business value in a popular work environment.
OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web
For decades, human-computer interaction has fundamentally been manual. Even today, almost all productive work done on the computer necessitates human input at every step. Autonomous virtual agents represent an exciting step in automating many of these menial tasks. Virtual agents would empower users with limited technical proficiency to harness the full possibilities of computer systems. They could also enable the efficient streamlining of numerous computer tasks, ranging from calendar management to complex travel bookings, with minimal human intervention. In this paper, we introduce OmniACT, the first-of-a-kind dataset and benchmark for assessing an agent's capability to generate executable programs to accomplish computer tasks. Our scope extends beyond traditional web automation, covering a diverse range of desktop applications. The dataset consists of fundamental tasks such as "Play the next song", as well as longer horizon tasks such as "Send an email to John Doe mentioning the time and place to meet". Specifically, given a pair of screen image and a visually-grounded natural language task, the goal is to generate a script capable of fully executing the task. We run several strong baseline language model agents on our benchmark. The strongest baseline, GPT-4, performs the best on our benchmark However, its performance level still reaches only 15% of the human proficiency in generating executable scripts capable of completing the task, demonstrating the challenge of our task for conventional web agents. Our benchmark provides a platform to measure and evaluate the progress of language model agents in automating computer tasks and motivates future work towards building multimodal models that bridge large language models and the visual grounding of computer screens.
TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks
We interact with computers on an everyday basis, be it in everyday life or work, and many aspects of work can be done entirely with access to a computer and the Internet. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. But how performant are AI agents at helping to accelerate or even autonomously perform work-related tasks? The answer to this question has important implications for both industry looking to adopt AI into their workflows, and for economic policy to understand the effects that adoption of AI may have on the labor market. To measure the progress of these LLM agents' performance on performing real-world professional tasks, in this paper, we introduce TheAgentCompany, an extensible benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker: by browsing the Web, writing code, running programs, and communicating with other coworkers. We build a self-contained environment with internal web sites and data that mimics a small software company environment, and create a variety of tasks that may be performed by workers in such a company. We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that with the most competitive agent, 24% of the tasks can be completed autonomously. This paints a nuanced picture on task automation with LM agents -- in a setting simulating a real workplace, a good portion of simpler tasks could be solved autonomously, but more difficult long-horizon tasks are still beyond the reach of current systems.
The FM Agent
Large language models (LLMs) are catalyzing the development of autonomous AI research agents for scientific and engineering discovery. We present FM Agent, a novel and general-purpose multi-agent framework that leverages a synergistic combination of LLM-based reasoning and large-scale evolutionary search to address complex real-world challenges. The core of FM Agent integrates several key innovations: 1) a cold-start initialization phase incorporating expert guidance, 2) a novel evolutionary sampling strategy for iterative optimization, 3) domain-specific evaluators that combine correctness, effectiveness, and LLM-supervised feedback, and 4) a distributed, asynchronous execution infrastructure built on Ray. Demonstrating broad applicability, our system has been evaluated across diverse domains, including operations research, machine learning, GPU kernel optimization, and classical mathematical problems. FM Agent reaches state-of-the-art results autonomously, without human interpretation or tuning -- 1976.3 on ALE-Bench (+5.2\%), 43.56\% on MLE-Bench (+4.0pp), up to 20x speedups on KernelBench, and establishes new state-of-the-art(SOTA) results on several classical mathematical problems. Beyond academic benchmarks, FM Agent shows considerable promise for both large-scale enterprise R\&D workflows and fundamental scientific research, where it can accelerate innovation, automate complex discovery processes, and deliver substantial engineering and scientific advances with broader societal impact.
Federation of Agents: A Semantics-Aware Communication Fabric for Large-Scale Agentic AI
We present Federation of Agents (FoA), a distributed orchestration framework that transforms static multi-agent coordination into dynamic, capability-driven collaboration. FoA introduces Versioned Capability Vectors (VCVs): machine-readable profiles that make agent capabilities searchable through semantic embeddings, enabling agents to advertise their capabilities, cost, and limitations. Our aarchitecturecombines three key innovations: (1) semantic routing that matches tasks to agents over sharded HNSW indices while enforcing operational constraints through cost-biased optimization, (2) dynamic task decomposition where compatible agents collaboratively break down complex tasks into DAGs of subtasks through consensus-based merging, and (3) smart clustering that groups agents working on similar subtasks into collaborative channels for k-round refinement before synthesis. Built on top of MQTT,s publish-subscribe semantics for scalable message passing, FoA achieves sub-linear complexity through hierarchical capability matching and efficient index maintenance. Evaluation on HealthBench shows 13x improvements over single-model baselines, with clustering-enhanced laboration particularly effective for complex reasoning tasks requiring multiple perspectives. The system scales horizontally while maintaining consistent performance, demonstrating that semantic orchestration with structured collaboration can unlock the collective intelligence of heterogeneous federations of AI agents.
Proposer-Agent-Evaluator(PAE): Autonomous Skill Discovery For Foundation Model Internet Agents
The vision of a broadly capable and goal-directed agent, such as an Internet-browsing agent in the digital world and a household humanoid in the physical world, has rapidly advanced, thanks to the generalization capability of foundation models. Such a generalist agent needs to have a large and diverse skill repertoire, such as finding directions between two travel locations and buying specific items from the Internet. If each skill needs to be specified manually through a fixed set of human-annotated instructions, the agent's skill repertoire will necessarily be limited due to the quantity and diversity of human-annotated instructions. In this work, we address this challenge by proposing Proposer-Agent-Evaluator, an effective learning system that enables foundation model agents to autonomously discover and practice skills in the wild. At the heart of PAE is a context-aware task proposer that autonomously proposes tasks for the agent to practice with context information of the environment such as user demos or even just the name of the website itself for Internet-browsing agents. Then, the agent policy attempts those tasks with thoughts and actual grounded operations in the real world with resulting trajectories evaluated by an autonomous VLM-based success evaluator. The success evaluation serves as the reward signal for the agent to refine its policies through RL. We validate PAE on challenging vision-based web navigation, using both real-world and self-hosted websites from WebVoyager and WebArena.To the best of our knowledge, this work represents the first effective learning system to apply autonomous task proposal with RL for agents that generalizes real-world human-annotated benchmarks with SOTA performances. Our open-source checkpoints and code can be found in https://yanqval.github.io/PAE/
SimWorld: An Open-ended Realistic Simulator for Autonomous Agents in Physical and Social Worlds
While LLM/VLM-powered AI agents have advanced rapidly in math, coding, and computer use, their applications in complex physical and social environments remain challenging. Building agents that can survive and thrive in the real world (for example, by autonomously earning income or running a business) requires massive-scale interaction, reasoning, training, and evaluation across diverse embodied scenarios. However, existing world simulators for such development fall short: they often rely on limited hand-crafted environments, simulate simplified game-like physics and social rules, and lack native support for LLM/VLM agents. We introduce SimWorld, a new simulator built on Unreal Engine 5, designed for developing and evaluating LLM/VLM agents in rich, real-world-like settings. SimWorld offers three core capabilities: (1) realistic, open-ended world simulation, including accurate physical and social dynamics and language-driven procedural environment generation; (2) a rich interface for LLM/VLM agents, with multimodal world inputs and open-vocabulary actions at varying levels of abstraction; and (3) diverse and extensible physical and social reasoning scenarios that are easily customizable by users. We demonstrate SimWorld by deploying frontier LLM agents (e.g., GPT-4o, Gemini-2.5-Flash, Claude-3.5, and DeepSeek-Prover-V2) on long-horizon multi-agent delivery tasks involving strategic cooperation and competition. The results reveal distinct reasoning patterns and limitations across models. We open-source SimWorld and hope it becomes a foundational platform for advancing real-world agent intelligence across disciplines: https://simworld.org.
Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
WebArena: A Realistic Web Environment for Building Autonomous Agents
With generative AI advances, the exciting potential for autonomous agents to manage daily tasks via natural language commands has emerged. However, cur rent agents are primarily created and tested in simplified synthetic environments, substantially limiting real-world scenario representation. In this paper, we build an environment for agent command and control that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on websites, and we create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and are designed to emulate tasks that humans routinely perform on the internet. We design and implement several autonomous agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 10.59%. These results highlight the need for further development of robust agents, that current state-of-the-art LMs are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress. Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/.
The OpenHands Software Agent SDK: A Composable and Extensible Foundation for Production Agents
Agents are now used widely in the process of software development, but building production-ready software engineering agents is a complex task. Deploying software agents effectively requires flexibility in implementation and experimentation, reliable and secure execution, and interfaces for users to interact with agents. In this paper, we present the OpenHands Software Agent SDK, a toolkit for implementing software development agents that satisfy these desiderata. This toolkit is a complete architectural redesign of the agent components of the popular OpenHands framework for software development agents, which has 64k+ GitHub stars. To achieve flexibility, we design a simple interface for implementing agents that requires only a few lines of code in the default case, but is easily extensible to more complex, full-featured agents with features such as custom tools, memory management, and more. For security and reliability, it delivers seamless local-to-remote execution portability, integrated REST/WebSocket services. For interaction with human users, it can connect directly to a variety of interfaces, such as visual workspaces (VS Code, VNC, browser), command-line interfaces, and APIs. Compared with existing SDKs from OpenAI, Claude, and Google, OpenHands uniquely integrates native sandboxed execution, lifecycle control, model-agnostic multi-LLM routing, and built-in security analysis. Empirical results on SWE-Bench Verified and GAIA benchmarks demonstrate strong performance. Put together, these elements allow the OpenHands Software Agent SDK to provide a practical foundation for prototyping, unlocking new classes of custom applications, and reliably deploying agents at scale.
Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks
Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.
OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments
Autonomous agents that accomplish complex computer tasks with minimal human interventions have the potential to transform human-computer interaction, significantly enhancing accessibility and productivity. However, existing benchmarks either lack an interactive environment or are limited to environments specific to certain applications or domains, failing to reflect the diverse and complex nature of real-world computer use, thereby limiting the scope of tasks and agent scalability. To address this issue, we introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents, supporting task setup, execution-based evaluation, and interactive learning across various operating systems such as Ubuntu, Windows, and macOS. OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks that involve arbitrary applications. Building upon OSWorld, we create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and workflows spanning multiple applications. Each task example is derived from real-world computer use cases and includes a detailed initial state setup configuration and a custom execution-based evaluation script for reliable, reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based agents on OSWorld reveals significant deficiencies in their ability to serve as computer assistants. While humans can accomplish over 72.36% of the tasks, the best model achieves only 12.24% success, primarily struggling with GUI grounding and operational knowledge. Comprehensive analysis using OSWorld provides valuable insights for developing multimodal generalist agents that were not possible with previous benchmarks. Our code, environment, baseline models, and data are publicly available at https://os-world.github.io.
V-IRL: Grounding Virtual Intelligence in Real Life
There is a sensory gulf between the Earth that humans inhabit and the digital realms in which modern AI agents are created. To develop AI agents that can sense, think, and act as flexibly as humans in real-world settings, it is imperative to bridge the realism gap between the digital and physical worlds. How can we embody agents in an environment as rich and diverse as the one we inhabit, without the constraints imposed by real hardware and control? Towards this end, we introduce V-IRL: a platform that enables agents to scalably interact with the real world in a virtual yet realistic environment. Our platform serves as a playground for developing agents that can accomplish various practical tasks and as a vast testbed for measuring progress in capabilities spanning perception, decision-making, and interaction with real-world data across the entire globe.
UFO2: The Desktop AgentOS
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computing devices (e.g., computers and mobile phones) by operating within the environments and interfaces (e.g., Graphical User Interface (GUI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey of these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components including the environment, observation space, and action space, and outlining essential capabilities such as understanding, planning, and grounding. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation protocols and benchmarks highlights how OS Agents are assessed across diverse tasks. Finally, we discuss current challenges and identify promising directions for future research, including safety and privacy, personalization and self-evolution. This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field. We present a 9-page version of our work, accepted by ACL 2025, to provide a concise overview to the domain.
Agent S: An Open Agentic Framework that Uses Computers Like a Human
We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI), aimed at transforming human-computer interaction by automating complex, multi-step tasks. Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces. To this end, Agent S introduces experience-augmented hierarchical planning, which learns from external knowledge search and internal experience retrieval at multiple levels, facilitating efficient task planning and subtask execution. In addition, it employs an Agent-Computer Interface (ACI) to better elicit the reasoning and control capabilities of GUI agents based on Multimodal Large Language Models (MLLMs). Evaluation on the OSWorld benchmark shows that Agent S outperforms the baseline by 9.37% on success rate (an 83.6% relative improvement) and achieves a new state-of-the-art. Comprehensive analysis highlights the effectiveness of individual components and provides insights for future improvements. Furthermore, Agent S demonstrates broad generalizability to different operating systems on a newly-released WindowsAgentArena benchmark. Code available at https://github.com/simular-ai/Agent-S.
Measuring Agents in Production
AI agents are actively running in production across diverse industries, yet little is publicly known about which technical approaches enable successful real-world deployments. We present the first large-scale systematic study of AI agents in production, surveying 306 practitioners and conducting 20 in-depth case studies via interviews across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and what the top development challenges are. We find that production agents are typically built using simple, controllable approaches: 68% execute at most 10 steps before requiring human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability remains the top development challenge, driven by difficulties in ensuring and evaluating agent correctness. Despite these challenges, simple yet effective methods already enable agents to deliver impact across diverse industries. Our study documents the current state of practice and bridges the gap between research and deployment by providing researchers visibility into production challenges while offering practitioners proven patterns from successful deployments.
SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
Language model (LM) agents are increasingly being used to automate complicated tasks in digital environments. Just as humans benefit from powerful software applications, such as integrated development environments, for complex tasks like software engineering, we posit that LM agents represent a new category of end users with their own needs and abilities, and would benefit from specially-built interfaces to the software they use. We investigate how interface design affects the performance of language model agents. As a result of this exploration, we introduce SWE-agent: a system that facilitates LM agents to autonomously use computers to solve software engineering tasks. SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs. We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively, far exceeding the previous state-of-the-art achieved with non-interactive LMs. Finally, we provide insight on how the design of the ACI can impact agents' behavior and performance.
Attacking Vision-Language Computer Agents via Pop-ups
Autonomous agents powered by large vision and language models (VLM) have demonstrated significant potential in completing daily computer tasks, such as browsing the web to book travel and operating desktop software, which requires agents to understand these interfaces. Despite such visual inputs becoming more integrated into agentic applications, what types of risks and attacks exist around them still remain unclear. In this work, we demonstrate that VLM agents can be easily attacked by a set of carefully designed adversarial pop-ups, which human users would typically recognize and ignore. This distraction leads agents to click these pop-ups instead of performing the tasks as usual. Integrating these pop-ups into existing agent testing environments like OSWorld and VisualWebArena leads to an attack success rate (the frequency of the agent clicking the pop-ups) of 86% on average and decreases the task success rate by 47%. Basic defense techniques such as asking the agent to ignore pop-ups or including an advertisement notice, are ineffective against the attack.
Self-Organizing Agent Network for LLM-based Workflow Automation
Recent multi-agent frameworks built upon large language models (LLMs) have demonstrated remarkable capabilities in complex task planning. However, in real-world enterprise environments, business workflows are typically composed through modularization and reuse of numerous subprocesses, resulting in intricate workflows characterized by lengthy and deeply nested execution paths. Such complexity poses significant challenges for LLM-driven orchestration, as extended reasoning chains and state-space explosions severely impact planning effectiveness and the proper sequencing of tool invocations. Therefore, developing an orchestration method with controllable structures capable of handling multi-layer nesting becomes a critical issue. To address this, we propose a novel structure-driven orchestration framework Self-Organizing Agent Network (SOAN). SOAN incrementally builds a formalized agent network by identifying and encapsulating structural units as independent agents, enhancing modularity and clarity in orchestration. Extensive evaluations were performed using multiple benchmarks as well as a real-world enterprise workflow dataset. Experimental results demonstrate that SOAN significantly outperforms state-of-the-art methods in terms of adaptability, fault tolerance, and execution efficiency.
Automating the Enterprise with Foundation Models
Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents
Mobile-Agent-V: Learning Mobile Device Operation Through Video-Guided Multi-Agent Collaboration
The rapid increase in mobile device usage necessitates improved automation for seamless task management. However, many AI-driven frameworks struggle due to insufficient operational knowledge. Manually written knowledge helps but is labor-intensive and inefficient. To address these challenges, we introduce Mobile-Agent-V, a framework that leverages video guidance to provide rich and cost-effective operational knowledge for mobile automation. Mobile-Agent-V enhances task execution capabilities by leveraging video inputs without requiring specialized sampling or preprocessing. Mobile-Agent-V integrates a sliding window strategy and incorporates a video agent and deep-reflection agent to ensure that actions align with user instructions. Through this innovative approach, users can record task processes with guidance, enabling the system to autonomously learn and execute tasks efficiently. Experimental results show that Mobile-Agent-V achieves a 30% performance improvement compared to existing frameworks.
Towards a Realistic Long-Term Benchmark for Open-Web Research Agents
We present initial results of a forthcoming benchmark for evaluating LLM agents on white-collar tasks of economic value. We evaluate agents on real-world "messy" open-web research tasks of the type that are routine in finance and consulting. In doing so, we lay the groundwork for an LLM agent evaluation suite where good performance directly corresponds to a large economic and societal impact. We built and tested several agent architectures with o1-preview, GPT-4o, Claude-3.5 Sonnet, Llama 3.1 (405b), and GPT-4o-mini. On average, LLM agents powered by Claude-3.5 Sonnet and o1-preview substantially outperformed agents using GPT-4o, with agents based on Llama 3.1 (405b) and GPT-4o-mini lagging noticeably behind. Across LLMs, a ReAct architecture with the ability to delegate subtasks to subagents performed best. In addition to quantitative evaluations, we qualitatively assessed the performance of the LLM agents by inspecting their traces and reflecting on their observations. Our evaluation represents the first in-depth assessment of agents' abilities to conduct challenging, economically valuable analyst-style research on the real open web.
Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications
Multi-agent systems represent a significant advancement in artificial intelligence, enabling complex problem-solving through coordinated specialized agents. However, these systems face fundamental challenges in context management, coordination efficiency, and scalable operation. This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP), addressing these challenges through standardized context sharing and coordination mechanisms. We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns. Through detailed implementation case studies across enterprise knowledge management, collaborative research, and distributed problem-solving domains, we demonstrate significant performance improvements compared to traditional approaches. Our evaluation methodology provides a systematic assessment framework with benchmark tasks and datasets specifically designed for multi-agent systems. We identify current limitations, emerging research opportunities, and potential transformative applications across industries. This work contributes to the evolution of more capable, collaborative, and context-aware artificial intelligence systems that can effectively address complex real-world challenges.
ScreenAgent: A Vision Language Model-driven Computer Control Agent
Existing Large Language Models (LLM) can invoke a variety of tools and APIs to complete complex tasks. The computer, as the most powerful and universal tool, could potentially be controlled directly by a trained LLM agent. Powered by the computer, we can hopefully build a more generalized agent to assist humans in various daily digital works. In this paper, we construct an environment for a Vision Language Model (VLM) agent to interact with a real computer screen. Within this environment, the agent can observe screenshots and manipulate the Graphics User Interface (GUI) by outputting mouse and keyboard actions. We also design an automated control pipeline that includes planning, acting, and reflecting phases, guiding the agent to continuously interact with the environment and complete multi-step tasks. Additionally, we construct the ScreenAgent Dataset, which collects screenshots and action sequences when completing a variety of daily computer tasks. Finally, we trained a model, ScreenAgent, which achieved computer control capabilities comparable to GPT-4V and demonstrated more precise UI positioning capabilities. Our attempts could inspire further research on building a generalist LLM agent. The code is available at https://github.com/niuzaisheng/ScreenAgent.
Agent Workflow Memory
Despite the potential of language model-based agents to solve real-world tasks such as web navigation, current methods still struggle with long-horizon tasks with complex action trajectories. In contrast, humans can flexibly solve complex tasks by learning reusable task workflows from past experiences and using them to guide future actions. To build agents that can similarly benefit from this process, we introduce Agent Workflow Memory (AWM), a method for inducing commonly reused routines, i.e., workflows, and selectively providing workflows to the agent to guide subsequent generations. AWM flexibly applies to both offline and online scenarios, where agents induce workflows from training examples beforehand or from test queries on the fly. We experiment on two major web navigation benchmarks -- Mind2Web and WebArena -- that collectively cover 1000+ tasks from 200+ domains across travel, shopping, and social media, among others. AWM substantially improves the baseline results by 24.6% and 51.1% relative success rate on Mind2Web and WebArena while reducing the number of steps taken to solve WebArena tasks successfully. Furthermore, online AWM robustly generalizes in cross-task, website, and domain evaluations, surpassing baselines from 8.9 to 14.0 absolute points as train-test task distribution gaps widen.
Game On: Towards Language Models as RL Experimenters
We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow, to enable automated mastery of control domains for embodied agents. To do so, it leverages a VLM to perform some of the capabilities normally required of a human experimenter, including the monitoring and analysis of experiment progress, the proposition of new tasks based on past successes and failures of the agent, decomposing tasks into a sequence of subtasks (skills), and retrieval of the skill to execute - enabling our system to build automated curricula for learning. We believe this is one of the first proposals for a system that leverages a VLM throughout the full experiment cycle of reinforcement learning. We provide a first prototype of this system, and examine the feasibility of current models and techniques for the desired level of automation. For this, we use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm, in order to steer data collection so as to aid learning new skills. Data collected in this way is shown to be useful for learning and iteratively improving control policies in a robotics domain. Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results, suggesting that the proposed architecture provides a potential recipe for fully automated mastery of tasks and domains for embodied agents.
VITA-E: Natural Embodied Interaction with Concurrent Seeing, Hearing, Speaking, and Acting
Current Vision-Language-Action (VLA) models are often constrained by a rigid, static interaction paradigm, which lacks the ability to see, hear, speak, and act concurrently as well as handle real-time user interruptions dynamically. This hinders seamless embodied collaboration, resulting in an inflexible and unresponsive user experience. To address these limitations, we introduce VITA-E, a novel embodied interaction framework designed for both behavioral concurrency and nearly real-time interruption. The core of our approach is a dual-model architecture where two parallel VLA instances operate as an ``Active Model'' and a ``Standby Model'', allowing the embodied agent to observe its environment, listen to user speech, provide verbal responses, and execute actions, all concurrently and interruptibly, mimicking human-like multitasking capabilities. We further propose a ``model-as-controller'' paradigm, where we fine-tune the VLM to generate special tokens that serve as direct system-level commands, coupling the model's reasoning with the system's behavior. Experiments conducted on a physical humanoid platform demonstrate that VITA-E can reliably handle complex interactive scenarios. Our framework is compatible with various dual-system VLA models, achieving an extremely high success rate on emergency stops and speech interruptions while also successfully performing concurrent speech and action. This represents a significant step towards more natural and capable embodied assistants.
Can Agents Fix Agent Issues?
LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops
Agentic AI systems use specialized agents to handle tasks within complex workflows, enabling automation and efficiency. However, optimizing these systems often requires labor-intensive, manual adjustments to refine roles, tasks, and interactions. This paper introduces a framework for autonomously optimizing Agentic AI solutions across industries, such as NLP-driven enterprise applications. The system employs agents for Refinement, Execution, Evaluation, Modification, and Documentation, leveraging iterative feedback loops powered by an LLM (Llama 3.2-3B). The framework achieves optimal performance without human input by autonomously generating and testing hypotheses to improve system configurations. This approach enhances scalability and adaptability, offering a robust solution for real-world applications in dynamic environments. Case studies across diverse domains illustrate the transformative impact of this framework, showcasing significant improvements in output quality, relevance, and actionability. All data for these case studies, including original and evolved agent codes, along with their outputs, are here: https://anonymous.4open.science/r/evolver-1D11/
Windows Agent Arena: Evaluating Multi-Modal OS Agents at Scale
Large language models (LLMs) show remarkable potential to act as computer agents, enhancing human productivity and software accessibility in multi-modal tasks that require planning and reasoning. However, measuring agent performance in realistic environments remains a challenge since: (i) most benchmarks are limited to specific modalities or domains (e.g. text-only, web navigation, Q&A, coding) and (ii) full benchmark evaluations are slow (on order of magnitude of days) given the multi-step sequential nature of tasks. To address these challenges, we introduce the Windows Agent Arena: a reproducible, general environment focusing exclusively on the Windows operating system (OS) where agents can operate freely within a real Windows OS and use the same wide range of applications, tools, and web browsers available to human users when solving tasks. We adapt the OSWorld framework (Xie et al., 2024) to create 150+ diverse Windows tasks across representative domains that require agent abilities in planning, screen understanding, and tool usage. Our benchmark is scalable and can be seamlessly parallelized in Azure for a full benchmark evaluation in as little as 20 minutes. To demonstrate Windows Agent Arena's capabilities, we also introduce a new multi-modal agent, Navi. Our agent achieves a success rate of 19.5% in the Windows domain, compared to 74.5% performance of an unassisted human. Navi also demonstrates strong performance on another popular web-based benchmark, Mind2Web. We offer extensive quantitative and qualitative analysis of Navi's performance, and provide insights into the opportunities for future research in agent development and data generation using Windows Agent Arena. Webpage: https://microsoft.github.io/WindowsAgentArena Code: https://github.com/microsoft/WindowsAgentArena
UFO: A UI-Focused Agent for Windows OS Interaction
We introduce UFO, an innovative UI-Focused agent to fulfill user requests tailored to applications on Windows OS, harnessing the capabilities of GPT-Vision. UFO employs a dual-agent framework to meticulously observe and analyze the graphical user interface (GUI) and control information of Windows applications. This enables the agent to seamlessly navigate and operate within individual applications and across them to fulfill user requests, even when spanning multiple applications. The framework incorporates a control interaction module, facilitating action grounding without human intervention and enabling fully automated execution. Consequently, UFO transforms arduous and time-consuming processes into simple tasks achievable solely through natural language commands. We conducted testing of UFO across 9 popular Windows applications, encompassing a variety of scenarios reflective of users' daily usage. The results, derived from both quantitative metrics and real-case studies, underscore the superior effectiveness of UFO in fulfilling user requests. To the best of our knowledge, UFO stands as the first UI agent specifically tailored for task completion within the Windows OS environment. The open-source code for UFO is available on https://github.com/microsoft/UFO.
UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability
While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.
Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents
Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents' performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and a fresh UI design principle for application providers in the era of LLMs. It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS).
Very Large-Scale Multi-Agent Simulation in AgentScope
Recent advances in large language models (LLMs) have opened new avenues for applying multi-agent systems in very large-scale simulations. However, there remain several challenges when conducting multi-agent simulations with existing platforms, such as limited scalability and low efficiency, unsatisfied agent diversity, and effort-intensive management processes. To address these challenges, we develop several new features and components for AgentScope, a user-friendly multi-agent platform, enhancing its convenience and flexibility for supporting very large-scale multi-agent simulations. Specifically, we propose an actor-based distributed mechanism as the underlying technological infrastructure towards great scalability and high efficiency, and provide flexible environment support for simulating various real-world scenarios, which enables parallel execution of multiple agents, centralized workflow orchestration, and both inter-agent and agent-environment interactions among agents. Moreover, we integrate an easy-to-use configurable tool and an automatic background generation pipeline in AgentScope, simplifying the process of creating agents with diverse yet detailed background settings. Last but not least, we provide a web-based interface for conveniently monitoring and managing a large number of agents that might deploy across multiple devices. We conduct a comprehensive simulation to demonstrate the effectiveness of the proposed enhancements in AgentScope, and provide detailed observations and discussions to highlight the great potential of applying multi-agent systems in large-scale simulations. The source code is released on GitHub at https://github.com/modelscope/agentscope to inspire further research and development in large-scale multi-agent simulations.
AdaptAgent: Adapting Multimodal Web Agents with Few-Shot Learning from Human Demonstrations
State-of-the-art multimodal web agents, powered by Multimodal Large Language Models (MLLMs), can autonomously execute many web tasks by processing user instructions and interacting with graphical user interfaces (GUIs). Current strategies for building web agents rely on (i) the generalizability of underlying MLLMs and their steerability via prompting, and (ii) large-scale fine-tuning of MLLMs on web-related tasks. However, web agents still struggle to automate tasks on unseen websites and domains, limiting their applicability to enterprise-specific and proprietary platforms. Beyond generalization from large-scale pre-training and fine-tuning, we propose building agents for few-shot adaptability using human demonstrations. We introduce the AdaptAgent framework that enables both proprietary and open-weights multimodal web agents to adapt to new websites and domains using few human demonstrations (up to 2). Our experiments on two popular benchmarks -- Mind2Web & VisualWebArena -- show that using in-context demonstrations (for proprietary models) or meta-adaptation demonstrations (for meta-learned open-weights models) boosts task success rate by 3.36% to 7.21% over non-adapted state-of-the-art models, corresponding to a relative increase of 21.03% to 65.75%. Furthermore, our additional analyses (a) show the effectiveness of multimodal demonstrations over text-only ones, (b) shed light on the influence of different data selection strategies during meta-learning on the generalization of the agent, and (c) demonstrate the effect of number of few-shot examples on the web agent's success rate. Overall, our results unlock a complementary axis for developing widely applicable multimodal web agents beyond large-scale pre-training and fine-tuning, emphasizing few-shot adaptability.
BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration
Autonomous agents driven by Large Language Models (LLMs) offer enormous potential for automation. Early proof of this technology can be found in various demonstrations of agents solving complex tasks, interacting with external systems to augment their knowledge, and triggering actions. In particular, workflows involving multiple agents solving complex tasks in a collaborative fashion exemplify their capacity to operate in less strict and less well-defined environments. Thus, a multi-agent approach has great potential for serving as a backbone in many industrial applications, ranging from complex knowledge retrieval systems to next generation robotic process automation. Given the reasoning abilities within the current generation of LLMs, complex processes require a multi-step approach that includes a plan of well-defined and modular tasks. Depending on the level of complexity, these tasks can be executed either by a single agent or a group of agents. In this work, we focus on designing a flexible agent engineering framework with careful attention to planning and execution, capable of handling complex use case applications across various domains. The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents working together towards solving tasks.
InfantAgent-Next: A Multimodal Generalist Agent for Automated Computer Interaction
This paper introduces InfantAgent-Next, a generalist agent capable of interacting with computers in a multimodal manner, encompassing text, images, audio, and video. Unlike existing approaches that either build intricate workflows around a single large model or only provide workflow modularity, our agent integrates tool-based and pure vision agents within a highly modular architecture, enabling different models to collaboratively solve decoupled tasks in a step-by-step manner. Our generality is demonstrated by our ability to evaluate not only pure vision-based real-world benchmarks (i.e., OSWorld), but also more general or tool-intensive benchmarks (e.g., GAIA and SWE-Bench). Specifically, we achieve 7.27% accuracy on OSWorld, higher than Claude-Computer-Use. Codes and evaluation scripts are open-sourced at https://github.com/bin123apple/InfantAgent.
EcomBench: Towards Holistic Evaluation of Foundation Agents in E-commerce
Foundation agents have rapidly advanced in their ability to reason and interact with real environments, making the evaluation of their core capabilities increasingly important. While many benchmarks have been developed to assess agent performance, most concentrate on academic settings or artificially designed scenarios while overlooking the challenges that arise in real applications. To address this issue, we focus on a highly practical real-world setting, the e-commerce domain, which involves a large volume of diverse user interactions, dynamic market conditions, and tasks directly tied to real decision-making processes. To this end, we introduce EcomBench, a holistic E-commerce Benchmark designed to evaluate agent performance in realistic e-commerce environments. EcomBench is built from genuine user demands embedded in leading global e-commerce ecosystems and is carefully curated and annotated through human experts to ensure clarity, accuracy, and domain relevance. It covers multiple task categories within e-commerce scenarios and defines three difficulty levels that evaluate agents on key capabilities such as deep information retrieval, multi-step reasoning, and cross-source knowledge integration. By grounding evaluation in real e-commerce contexts, EcomBench provides a rigorous and dynamic testbed for measuring the practical capabilities of agents in modern e-commerce.
Helmsman: Autonomous Synthesis of Federated Learning Systems via Multi-Agent Collaboration
Federated Learning (FL) offers a powerful paradigm for training models on decentralized data, but its promise is often undermined by the immense complexity of designing and deploying robust systems. The need to select, combine, and tune strategies for multifaceted challenges like data heterogeneity and system constraints has become a critical bottleneck, resulting in brittle, bespoke solutions. To address this, we introduce Helmsman, a novel multi-agent system that automates the end-to-end synthesis of federated learning systems from high-level user specifications. It emulates a principled research and development workflow through three collaborative phases: (1) interactive human-in-the-loop planning to formulate a sound research plan, (2) modular code generation by supervised agent teams, and (3) a closed-loop of autonomous evaluation and refinement in a sandboxed simulation environment. To facilitate rigorous evaluation, we also introduce AgentFL-Bench, a new benchmark comprising 16 diverse tasks designed to assess the system-level generation capabilities of agentic systems in FL. Extensive experiments demonstrate that our approach generates solutions competitive with, and often superior to, established hand-crafted baselines. Our work represents a significant step towards the automated engineering of complex decentralized AI systems.
DREAMWALKER: Mental Planning for Continuous Vision-Language Navigation
VLN-CE is a recently released embodied task, where AI agents need to navigate a freely traversable environment to reach a distant target location, given language instructions. It poses great challenges due to the huge space of possible strategies. Driven by the belief that the ability to anticipate the consequences of future actions is crucial for the emergence of intelligent and interpretable planning behavior, we propose DREAMWALKER -- a world model based VLN-CE agent. The world model is built to summarize the visual, topological, and dynamic properties of the complicated continuous environment into a discrete, structured, and compact representation. DREAMWALKER can simulate and evaluate possible plans entirely in such internal abstract world, before executing costly actions. As opposed to existing model-free VLN-CE agents simply making greedy decisions in the real world, which easily results in shortsighted behaviors, DREAMWALKER is able to make strategic planning through large amounts of ``mental experiments.'' Moreover, the imagined future scenarios reflect our agent's intention, making its decision-making process more transparent. Extensive experiments and ablation studies on VLN-CE dataset confirm the effectiveness of the proposed approach and outline fruitful directions for future work.
SAPIEN: Affective Virtual Agents Powered by Large Language Models
In this demo paper, we introduce SAPIEN, a platform for high-fidelity virtual agents driven by large language models that can hold open domain conversations with users in 13 different languages, and display emotions through facial expressions and voice. The platform allows users to customize their virtual agent's personality, background, and conversation premise, thus providing a rich, immersive interaction experience. Furthermore, after the virtual meeting, the user can choose to get the conversation analyzed and receive actionable feedback on their communication skills. This paper illustrates an overview of the platform and discusses the various application domains of this technology, ranging from entertainment to mental health, communication training, language learning, education, healthcare, and beyond. Additionally, we consider the ethical implications of such realistic virtual agent representations and the potential challenges in ensuring responsible use.
Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
CGMI: Configurable General Multi-Agent Interaction Framework
Benefiting from the powerful capabilities of large language models (LLMs), agents based on LLMs have shown the potential to address domain-specific tasks and emulate human behaviors. However, the content generated by these agents remains somewhat superficial, owing to their limited domain expertise and the absence of an effective cognitive architecture. To address this, we present the Configurable General Multi-Agent Interaction (CGMI) framework, designed to replicate human interactions in real-world scenarios. Specifically, we propose a tree-structured methodology for the assignment, detection, and maintenance of agent personality. Additionally, we designed a cognitive architecture equipped with a skill library based on the ACT* model, which contains memory, reflection, and planning modules. We have also integrated general agents to augment the virtual environment's realism. Using the CGMI framework, we simulated numerous classroom interactions between teacher and students. The experiments indicate that aspects such as the teaching methodology, curriculum, and student performance closely mirror real classroom settings. We will open source our work.
DPO Learning with LLMs-Judge Signal for Computer Use Agents
Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.
EnvX: Agentize Everything with Agentic AI
The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
Efficient and Scalable Agentic AI with Heterogeneous Systems
AI agents are emerging as a dominant workload in a wide range of applications, promising to be the vehicle that delivers the promised benefits of AI to enterprises and consumers. Unlike conventional software or static inference, agentic workloads are dynamic and structurally complex. Often these agents are directed graphs of compute and IO operations that span multi-modal data input and conversion), data processing and context gathering (e.g vector DB lookups), multiple LLM inferences, tool calls, etc. To scale AI agent usage, we need efficient and scalable deployment and agent-serving infrastructure. To tackle this challenge, in this paper, we present a system design for dynamic orchestration of AI agent workloads on heterogeneous compute infrastructure spanning CPUs and accelerators, both from different vendors and across different performance tiers within a single vendor. The system delivers several building blocks: a framework for planning and optimizing agentic AI execution graphs using cost models that account for compute, memory, and bandwidth constraints of different HW; a MLIR based representation and compilation system that can decompose AI agent execution graphs into granular operators and generate code for different HW options; and a dynamic orchestration system that can place the granular components across a heterogeneous compute infrastructure and stitch them together while meeting an end-to-end SLA. Our design performs a systems level TCO optimization and preliminary results show that leveraging a heterogeneous infrastructure can deliver significant TCO benefits. A preliminary surprising finding is that for some workloads a heterogeneous combination of older generation GPUs with newer accelerators can deliver similar TCO as the latest generation homogenous GPU infrastructure design, potentially extending the life of deployed infrastructure.
AgentStudio: A Toolkit for Building General Virtual Agents
Creating autonomous virtual agents capable of using arbitrary software on any digital device remains a major challenge for artificial intelligence. Two key obstacles hinder progress: insufficient infrastructure for building virtual agents in real-world environments, and the need for in-the-wild evaluation of fundamental agent abilities. To address this, we introduce AgentStudio, an online, realistic, and multimodal toolkit that covers the entire lifecycle of agent development. This includes environment setups, data collection, agent evaluation, and visualization. The observation and action spaces are highly generic, supporting both function calling and human-computer interfaces. This versatility is further enhanced by AgentStudio's graphical user interfaces, which allow efficient development of datasets and benchmarks in real-world settings. To illustrate, we introduce a visual grounding dataset and a real-world benchmark suite, both created with our graphical interfaces. Furthermore, we present several actionable insights derived from AgentStudio, e.g., general visual grounding, open-ended tool creation, learning from videos, etc. We have open-sourced the environments, datasets, benchmarks, and interfaces to promote research towards developing general virtual agents for the future.
AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
AgentSense: Virtual Sensor Data Generation Using LLM Agents in Simulated Home Environments
A major challenge in developing robust and generalizable Human Activity Recognition (HAR) systems for smart homes is the lack of large and diverse labeled datasets. Variations in home layouts, sensor configurations, and individual behaviors further exacerbate this issue. To address this, we leverage the idea of embodied AI agents -- virtual agents that perceive and act within simulated environments guided by internal world models. We introduce AgentSense, a virtual data generation pipeline in which agents live out daily routines in simulated smart homes, with behavior guided by Large Language Models (LLMs). The LLM generates diverse synthetic personas and realistic routines grounded in the environment, which are then decomposed into fine-grained actions. These actions are executed in an extended version of the VirtualHome simulator, which we augment with virtual ambient sensors that record the agents' activities. Our approach produces rich, privacy-preserving sensor data that reflects real-world diversity. We evaluate AgentSense on five real HAR datasets. Models pretrained on the generated data consistently outperform baselines, especially in low-resource settings. Furthermore, combining the generated virtual sensor data with a small amount of real data achieves performance comparable to training on full real-world datasets. These results highlight the potential of using LLM-guided embodied agents for scalable and cost-effective sensor data generation in HAR. Our code is publicly available at https://github.com/ZikangLeng/AgentSense.
Mind the Goal: Data-Efficient Goal-Oriented Evaluation of Conversational Agents and Chatbots using Teacher Models
Evaluating the quality of multi-turn chatbot interactions remains challenging, as most existing methods assess interactions at the turn level without addressing whether a user's overarching goal was fulfilled. A ``goal'' here refers to an information need or task, such as asking for policy information or applying for leave. We propose a comprehensive framework for goal-oriented evaluation of multi-agent systems (MAS), introducing the Goal Success Rate (GSR) to measure the percentage of fulfilled goals, and a Root Cause of Failure (RCOF) taxonomy to identify reasons for failure in multi-agent chatbots. Our method segments conversations by user goals and evaluates success using all relevant turns. We present a model-based evaluation system combining teacher LLMs, where domain experts define goals, set quality standards serving as a guidance for the LLMs. The LLMs use ``thinking tokens'' to produce interpretable rationales, enabling explainable, data-efficient evaluations. In an enterprise setting, we apply our framework to evaluate AIDA, a zero-to-one employee conversational agent system built as a ground-up multi-agent conversational agent, and observe GSR improvement from 63\% to 79\% over six months since its inception. Our framework is generic and offers actionable insights through a detailed defect taxonomy based on analysis of failure points in multi-agent chatbots, diagnosing overall success, identifying key failure modes, and informing system improvements.
LIMI: Less is More for Agency
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one
AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents
Autonomy via agents using large language models (LLMs) for personalized, standardized tasks boosts human efficiency. Automating web tasks (like booking hotels within a budget) is increasingly sought after. Fulfilling practical needs, the web agent also serves as an important proof-of-concept example for various agent grounding scenarios, with its success promising advancements in many future applications. Prior research often handcrafts web agent strategies (e.g., prompting templates, multi-agent systems, search methods, etc.) and the corresponding in-context examples, which may not generalize well across all real-world scenarios. On the other hand, there has been limited study on the misalignment between a web agent's observation/action representation and the pre-training data of the LLM it's based on. This discrepancy is especially notable when LLMs are primarily trained for language completion rather than tasks involving embodied navigation actions and symbolic web elements. Our study enhances an LLM-based web agent by simply refining its observation and action space to better align with the LLM's capabilities. This approach enables our base agent to significantly outperform previous methods on a wide variety of web tasks. Specifically, on WebArena, a benchmark featuring general-purpose web interaction tasks, our agent AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively, and boosts the success rate by 26.6 points (+161%) over similar plain web agents with its observation and action space alignment. We achieve this without using in-context examples, new agent roles, online feedback or search strategies. AgentOccam's simple design highlights LLMs' impressive zero-shot performance on web tasks, and underlines the critical role of carefully tuning observation and action spaces for LLM-based agents.
LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
We introduce LiteWebAgent, an open-source suite for VLM-based web agent applications. Our framework addresses a critical gap in the web agent ecosystem with a production-ready solution that combines minimal serverless backend configuration, intuitive user and browser interfaces, and extensible research capabilities in agent planning, memory, and tree search. For the core LiteWebAgent agent framework, we implemented a simple yet effective baseline using recursive function calling, providing with decoupled action generation and action grounding. In addition, we integrate advanced research components such as agent planning, agent workflow memory, and tree search in a modular and extensible manner. We then integrate the LiteWebAgent agent framework with frontend and backend as deployed systems in two formats: (1) a production Vercel-based web application, which provides users with an agent-controlled remote browser, (2) a Chrome extension leveraging LiteWebAgent's API to control an existing Chrome browser via CDP (Chrome DevTools Protocol). The LiteWebAgent framework is available at https://github.com/PathOnAI/LiteWebAgent, with deployed frontend at https://lite-web-agent.vercel.app/.
SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
ReALFRED: An Embodied Instruction Following Benchmark in Photo-Realistic Environments
Simulated virtual environments have been widely used to learn robotic agents that perform daily household tasks. These environments encourage research progress by far, but often provide limited object interactability, visual appearance different from real-world environments, or relatively smaller environment sizes. This prevents the learned models in the virtual scenes from being readily deployable. To bridge the gap between these learning environments and deploying (i.e., real) environments, we propose the ReALFRED benchmark that employs real-world scenes, objects, and room layouts to learn agents to complete household tasks by understanding free-form language instructions and interacting with objects in large, multi-room and 3D-captured scenes. Specifically, we extend the ALFRED benchmark with updates for larger environmental spaces with smaller visual domain gaps. With ReALFRED, we analyze previously crafted methods for the ALFRED benchmark and observe that they consistently yield lower performance in all metrics, encouraging the community to develop methods in more realistic environments. Our code and data are publicly available.
Agent S2: A Compositional Generalist-Specialist Framework for Computer Use Agents
Computer use agents automate digital tasks by directly interacting with graphical user interfaces (GUIs) on computers and mobile devices, offering significant potential to enhance human productivity by completing an open-ended space of user queries. However, current agents face significant challenges: imprecise grounding of GUI elements, difficulties with long-horizon task planning, and performance bottlenecks from relying on single generalist models for diverse cognitive tasks. To this end, we introduce Agent S2, a novel compositional framework that delegates cognitive responsibilities across various generalist and specialist models. We propose a novel Mixture-of-Grounding technique to achieve precise GUI localization and introduce Proactive Hierarchical Planning, dynamically refining action plans at multiple temporal scales in response to evolving observations. Evaluations demonstrate that Agent S2 establishes new state-of-the-art (SOTA) performance on three prominent computer use benchmarks. Specifically, Agent S2 achieves 18.9% and 32.7% relative improvements over leading baseline agents such as Claude Computer Use and UI-TARS on the OSWorld 15-step and 50-step evaluation. Moreover, Agent S2 generalizes effectively to other operating systems and applications, surpassing previous best methods by 52.8% on WindowsAgentArena and by 16.52% on AndroidWorld relatively. Code available at https://github.com/simular-ai/Agent-S.
Autonomous Deep Agent
This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.
CACA Agent: Capability Collaboration based AI Agent
As AI Agents based on Large Language Models (LLMs) have shown potential in practical applications across various fields, how to quickly deploy an AI agent and how to conveniently expand the application scenario of AI agents has become a challenge. Previous studies mainly focused on implementing all the reasoning capabilities of AI agents within a single LLM, which often makes the model more complex and also reduces the extensibility of AI agent functionality. In this paper, we propose CACA Agent (Capability Collaboration based AI Agent), using an open architecture inspired by service computing. CACA Agent integrates a set of collaborative capabilities to implement AI Agents, not only reducing the dependence on a single LLM, but also enhancing the extensibility of both the planning abilities and the tools available to AI agents. Utilizing the proposed system, we present a demo to illustrate the operation and the application scenario extension of CACA Agent.
AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery
Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.
REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites
We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.
Agents in Software Engineering: Survey, Landscape, and Vision
In recent years, Large Language Models (LLMs) have achieved remarkable success and have been widely used in various downstream tasks, especially in the tasks of the software engineering (SE) field. We find that many studies combining LLMs with SE have employed the concept of agents either explicitly or implicitly. However, there is a lack of an in-depth survey to sort out the development context of existing works, analyze how existing works combine the LLM-based agent technologies to optimize various tasks, and clarify the framework of LLM-based agents in SE. In this paper, we conduct the first survey of the studies on combining LLM-based agents with SE and present a framework of LLM-based agents in SE which includes three key modules: perception, memory, and action. We also summarize the current challenges in combining the two fields and propose future opportunities in response to existing challenges. We maintain a GitHub repository of the related papers at: https://github.com/DeepSoftwareAnalytics/Awesome-Agent4SE.
OS-Copilot: Towards Generalist Computer Agents with Self-Improvement
Autonomous interaction with the computer has been a longstanding challenge with great potential, and the recent proliferation of large language models (LLMs) has markedly accelerated progress in building digital agents. However, most of these agents are designed to interact with a narrow domain, such as a specific software or website. This narrow focus constrains their applicability for general computer tasks. To this end, we introduce OS-Copilot, a framework to build generalist agents capable of interfacing with comprehensive elements in an operating system (OS), including the web, code terminals, files, multimedia, and various third-party applications. We use OS-Copilot to create FRIDAY, a self-improving embodied agent for automating general computer tasks. On GAIA, a general AI assistants benchmark, FRIDAY outperforms previous methods by 35%, showcasing strong generalization to unseen applications via accumulated skills from previous tasks. We also present numerical and quantitative evidence that FRIDAY learns to control and self-improve on Excel and Powerpoint with minimal supervision. Our OS-Copilot framework and empirical findings provide infrastructure and insights for future research toward more capable and general-purpose computer agents.
A Safety and Security Framework for Real-World Agentic Systems
This paper introduces a dynamic and actionable framework for securing agentic AI systems in enterprise deployment. We contend that safety and security are not merely fixed attributes of individual models but also emergent properties arising from the dynamic interactions among models, orchestrators, tools, and data within their operating environments. We propose a new way of identification of novel agentic risks through the lens of user safety. Although, for traditional LLMs and agentic models in isolation, safety and security has a clear separation, through the lens of safety in agentic systems, they appear to be connected. Building on this foundation, we define an operational agentic risk taxonomy that unifies traditional safety and security concerns with novel, uniquely agentic risks, including tool misuse, cascading action chains, and unintended control amplification among others. At the core of our approach is a dynamic agentic safety and security framework that operationalizes contextual agentic risk management by using auxiliary AI models and agents, with human oversight, to assist in contextual risk discovery, evaluation, and mitigation. We further address one of the most challenging aspects of safety and security of agentic systems: risk discovery through sandboxed, AI-driven red teaming. We demonstrate the framework effectiveness through a detailed case study of NVIDIA flagship agentic research assistant, AI-Q Research Assistant, showcasing practical, end-to-end safety and security evaluations in complex, enterprise-grade agentic workflows. This risk discovery phase finds novel agentic risks that are then contextually mitigated. We also release the dataset from our case study, containing traces of over 10,000 realistic attack and defense executions of the agentic workflow to help advance research in agentic safety.
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
Code Agent can be an End-to-end System Hacker: Benchmarking Real-world Threats of Computer-use Agent
Computer-use agent (CUA) frameworks, powered by large language models (LLMs) or multimodal LLMs (MLLMs), are rapidly maturing as assistants that can perceive context, reason, and act directly within software environments. Among their most critical applications is operating system (OS) control. As CUAs in the OS domain become increasingly embedded in daily operations, it is imperative to examine their real-world security implications, specifically whether CUAs can be misused to perform realistic, security-relevant attacks. Existing works exhibit four major limitations: Missing attacker-knowledge model on tactics, techniques, and procedures (TTP), Incomplete coverage for end-to-end kill chains, unrealistic environment without multi-host and encrypted user credentials, and unreliable judgment dependent on LLM-as-a-Judge. To address these gaps, we propose AdvCUA, the first benchmark aligned with real-world TTPs in MITRE ATT&CK Enterprise Matrix, which comprises 140 tasks, including 40 direct malicious tasks, 74 TTP-based malicious tasks, and 26 end-to-end kill chains, systematically evaluates CUAs under a realistic enterprise OS security threat in a multi-host environment sandbox by hard-coded evaluation. We evaluate the existing five mainstream CUAs, including ReAct, AutoGPT, Gemini CLI, Cursor CLI, and Cursor IDE based on 8 foundation LLMs. The results demonstrate that current frontier CUAs do not adequately cover OS security-centric threats. These capabilities of CUAs reduce dependence on custom malware and deep domain expertise, enabling even inexperienced attackers to mount complex enterprise intrusions, which raises social concern about the responsibility and security of CUAs.
FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces
Virtual film production requires intricate decision-making processes, including scriptwriting, virtual cinematography, and precise actor positioning and actions. Motivated by recent advances in automated decision-making with language agent-based societies, this paper introduces FilmAgent, a novel LLM-based multi-agent collaborative framework for end-to-end film automation in our constructed 3D virtual spaces. FilmAgent simulates various crew roles, including directors, screenwriters, actors, and cinematographers, and covers key stages of a film production workflow: (1) idea development transforms brainstormed ideas into structured story outlines; (2) scriptwriting elaborates on dialogue and character actions for each scene; (3) cinematography determines the camera setups for each shot. A team of agents collaborates through iterative feedback and revisions, thereby verifying intermediate scripts and reducing hallucinations. We evaluate the generated videos on 15 ideas and 4 key aspects. Human evaluation shows that FilmAgent outperforms all baselines across all aspects and scores 3.98 out of 5 on average, showing the feasibility of multi-agent collaboration in filmmaking. Further analysis reveals that FilmAgent, despite using the less advanced GPT-4o model, surpasses the single-agent o1, showing the advantage of a well-coordinated multi-agent system. Lastly, we discuss the complementary strengths and weaknesses of OpenAI's text-to-video model Sora and our FilmAgent in filmmaking.
Large Action Models: From Inception to Implementation
As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.
DRBench: A Realistic Benchmark for Enterprise Deep Research
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
In the field of MLLM-based GUI agents, compared to smartphones, the PC scenario not only features a more complex interactive environment, but also involves more intricate intra- and inter-app workflows. To address these issues, we propose a hierarchical agent framework named PC-Agent. Specifically, from the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content. From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture that decomposes decision-making processes into Instruction-Subtask-Action levels. Within this architecture, three agents (i.e., Manager, Progress and Decision) are set up for instruction decomposition, progress tracking and step-by-step decision-making respectively. Additionally, a Reflection agent is adopted to enable timely bottom-up error feedback and adjustment. We also introduce a new benchmark PC-Eval with 25 real-world complex instructions. Empirical results on PC-Eval show that our PC-Agent achieves a 32% absolute improvement of task success rate over previous state-of-the-art methods. The code will be publicly available.
VitaBench: Benchmarking LLM Agents with Versatile Interactive Tasks in Real-world Applications
As LLM-based agents are increasingly deployed in real-life scenarios, existing benchmarks fail to capture their inherent complexity of handling extensive information, leveraging diverse resources, and managing dynamic user interactions. To address this gap, we introduce VitaBench, a challenging benchmark that evaluates agents on versatile interactive tasks grounded in real-world settings. Drawing from daily applications in food delivery, in-store consumption, and online travel services, VitaBench presents agents with the most complex life-serving simulation environment to date, comprising 66 tools. Through a framework that eliminates domain-specific policies, we enable flexible composition of these scenarios and tools, yielding 100 cross-scenario tasks (main results) and 300 single-scenario tasks. Each task is derived from multiple real user requests and requires agents to reason across temporal and spatial dimensions, utilize complex tool sets, proactively clarify ambiguous instructions, and track shifting user intent throughout multi-turn conversations. Moreover, we propose a rubric-based sliding window evaluator, enabling robust assessment of diverse solution pathways in complex environments and stochastic interactions. Our comprehensive evaluation reveals that even the most advanced models achieve only 30% success rate on cross-scenario tasks, and less than 50% success rate on others. Overall, we believe VitaBench will serve as a valuable resource for advancing the development of AI agents in practical real-world applications. The code, dataset, and leaderboard are available at https://vitabench.github.io/
A Survey on Trustworthy LLM Agents: Threats and Countermeasures
With the rapid evolution of Large Language Models (LLMs), LLM-based agents and Multi-agent Systems (MAS) have significantly expanded the capabilities of LLM ecosystems. This evolution stems from empowering LLMs with additional modules such as memory, tools, environment, and even other agents. However, this advancement has also introduced more complex issues of trustworthiness, which previous research focused solely on LLMs could not cover. In this survey, we propose the TrustAgent framework, a comprehensive study on the trustworthiness of agents, characterized by modular taxonomy, multi-dimensional connotations, and technical implementation. By thoroughly investigating and summarizing newly emerged attacks, defenses, and evaluation methods for agents and MAS, we extend the concept of Trustworthy LLM to the emerging paradigm of Trustworthy Agent. In TrustAgent, we begin by deconstructing and introducing various components of the Agent and MAS. Then, we categorize their trustworthiness into intrinsic (brain, memory, and tool) and extrinsic (user, agent, and environment) aspects. Subsequently, we delineate the multifaceted meanings of trustworthiness and elaborate on the implementation techniques of existing research related to these internal and external modules. Finally, we present our insights and outlook on this domain, aiming to provide guidance for future endeavors.
The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering
The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent
ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence
The rapid advancement of large language models (LLMs) has paved the way for the development of highly capable autonomous agents. However, existing multi-agent frameworks often struggle with integrating diverse capable third-party agents due to reliance on agents defined within their own ecosystems. They also face challenges in simulating distributed environments, as most frameworks are limited to single-device setups. Furthermore, these frameworks often rely on hard-coded communication pipelines, limiting their adaptability to dynamic task requirements. Inspired by the concept of the Internet, we propose the Internet of Agents (IoA), a novel framework that addresses these limitations by providing a flexible and scalable platform for LLM-based multi-agent collaboration. IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control. Through extensive experiments on general assistant tasks, embodied AI tasks, and retrieval-augmented generation benchmarks, we demonstrate that IoA consistently outperforms state-of-the-art baselines, showcasing its ability to facilitate effective collaboration among heterogeneous agents. IoA represents a step towards linking diverse agents in an Internet-like environment, where agents can seamlessly collaborate to achieve greater intelligence and capabilities. Our codebase has been released at https://github.com/OpenBMB/IoA.
Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation
The rapid advancement of scientific progress requires innovative tools that can accelerate discovery. While recent AI methods, particularly large language models (LLMs), have shown promise in tasks such as hypothesis generation and experimental design, they fall short in replicating the collaborative nature of real-world scientific practices, where diverse teams of experts work together to tackle complex problems. To address the limitation, we propose an LLM-based multi-agent system, i.e., Virtual Scientists (VirSci), designed to mimic the teamwork inherent in scientific research. VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas. Through comprehensive experiments, we demonstrate that this multi-agent approach outperforms the state-of-the-art method in producing novel and impactful scientific ideas, showing potential in aligning with key insights in the Science of Science field. Our findings suggest that integrating collaborative agents can lead to more innovative scientific outputs, offering a robust system for autonomous scientific discovery.
Conceptual Framework for Autonomous Cognitive Entities
The rapid development and adoption of Generative AI (GAI) technology in the form of chatbots such as ChatGPT and Claude has greatly increased interest in agentic machines. This paper introduces the Autonomous Cognitive Entity (ACE) model, a novel framework for a cognitive architecture, enabling machines and software agents to operate more independently. Drawing inspiration from the OSI model, the ACE framework presents layers of abstraction to conceptualize artificial cognitive architectures. The model is designed to harness the capabilities of the latest generative AI technologies, including large language models (LLMs) and multimodal generative models (MMMs), to build autonomous, agentic systems. The ACE framework comprises six layers: the Aspirational Layer, Global Strategy, Agent Model, Executive Function, Cognitive Control, and Task Prosecution. Each layer plays a distinct role, ranging from setting the moral compass and strategic thinking to task selection and execution. The ACE framework also incorporates mechanisms for handling failures and adapting actions, thereby enhancing the robustness and flexibility of autonomous agents. This paper introduces the conceptual framework and proposes implementation strategies that have been tested and observed in industry. The goal of this paper is to formalize this framework so as to be more accessible.
Instruction Agent: Enhancing Agent with Expert Demonstration
Graphical user interface (GUI) agents have advanced rapidly but still struggle with complex tasks involving novel UI elements, long-horizon actions, and personalized trajectories. In this work, we introduce Instruction Agent, a GUI agent that leverages expert demonstrations to solve such tasks, enabling completion of otherwise difficult workflows. Given a single demonstration, the agent extracts step-by-step instructions and executes them by strictly following the trajectory intended by the user, which avoids making mistakes during execution. The agent leverages the verifier and backtracker modules further to improve robustness. Both modules are critical to understand the current outcome from each action and handle unexpected interruptions(such as pop-up windows) during execution. Our experiments show that Instruction Agent achieves a 60% success rate on a set of tasks in OSWorld that all top-ranked agents failed to complete. The Instruction Agent offers a practical and extensible framework, bridging the gap between current GUI agents and reliable real-world GUI task automation.
AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials
Graphical User Interface (GUI) agents hold great potential for automating complex tasks across diverse digital environments, from web applications to desktop software. However, the development of such agents is hindered by the lack of high-quality, multi-step trajectory data required for effective training. Existing approaches rely on expensive and labor-intensive human annotation, making them unsustainable at scale. To address this challenge, we propose AgentTrek, a scalable data synthesis pipeline that generates high-quality GUI agent trajectories by leveraging web tutorials. Our method automatically gathers tutorial-like texts from the internet, transforms them into task goals with step-by-step instructions, and employs a visual-language model agent to simulate their execution in a real digital environment. A VLM-based evaluator ensures the correctness of the generated trajectories. We demonstrate that training GUI agents with these synthesized trajectories significantly improves their grounding and planning performance over the current models. Moreover, our approach is more cost-efficient compared to traditional human annotation methods. This work underscores the potential of guided replay with web tutorials as a viable strategy for large-scale GUI agent training, paving the way for more capable and autonomous digital agents.
CowPilot: A Framework for Autonomous and Human-Agent Collaborative Web Navigation
While much work on web agents emphasizes the promise of autonomously performing tasks on behalf of users, in reality, agents often fall short on complex tasks in real-world contexts and modeling user preference. This presents an opportunity for humans to collaborate with the agent and leverage the agent's capabilities effectively. We propose CowPilot, a framework supporting autonomous as well as human-agent collaborative web navigation, and evaluation across task success and task efficiency. CowPilot reduces the number of steps humans need to perform by allowing agents to propose next steps, while users are able to pause, reject, or take alternative actions. During execution, users can interleave their actions with the agent by overriding suggestions or resuming agent control when needed. We conducted case studies on five common websites and found that the human-agent collaborative mode achieves the highest success rate of 95% while requiring humans to perform only 15.2% of the total steps. Even with human interventions during task execution, the agent successfully drives up to half of task success on its own. CowPilot can serve as a useful tool for data collection and agent evaluation across websites, which we believe will enable research in how users and agents can work together. Video demonstrations are available at https://oaishi.github.io/cowpilot.html
The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey
This survey paper examines the recent advancements in AI agent implementations, with a focus on their ability to achieve complex goals that require enhanced reasoning, planning, and tool execution capabilities. The primary objectives of this work are to a) communicate the current capabilities and limitations of existing AI agent implementations, b) share insights gained from our observations of these systems in action, and c) suggest important considerations for future developments in AI agent design. We achieve this by providing overviews of single-agent and multi-agent architectures, identifying key patterns and divergences in design choices, and evaluating their overall impact on accomplishing a provided goal. Our contribution outlines key themes when selecting an agentic architecture, the impact of leadership on agent systems, agent communication styles, and key phases for planning, execution, and reflection that enable robust AI agent systems.
Control Plane as a Tool: A Scalable Design Pattern for Agentic AI Systems
Agentic AI systems represent a new frontier in artificial intelligence, where agents often based on large language models(LLMs) interact with tools, environments, and other agents to accomplish tasks with a degree of autonomy. These systems show promise across a range of domains, but their architectural underpinnings remain immature. This paper conducts a comprehensive review of the types of agents, their modes of interaction with the environment, and the infrastructural and architectural challenges that emerge. We identify a gap in how these systems manage tool orchestration at scale and propose a reusable design abstraction: the "Control Plane as a Tool" pattern. This pattern allows developers to expose a single tool interface to an agent while encapsulating modular tool routing logic behind it. We position this pattern within the broader context of agent design and argue that it addresses several key challenges in scaling, safety, and extensibility.
Beyond pip install: Evaluating LLM Agents for the Automated Installation of Python Projects
Many works have recently proposed the use of Large Language Model (LLM) based agents for performing `repository level' tasks, loosely defined as a set of tasks whose scopes are greater than a single file. This has led to speculation that the orchestration of these repository-level tasks could lead to software engineering agents capable of performing almost independently of human intervention. However, of the suite of tasks that would need to be performed by this autonomous software engineering agent, we argue that one important task is missing, which is to fulfil project level dependency by installing other repositories. To investigate the feasibility of this repository level installation task, we introduce a benchmark of of repository installation tasks curated from 40 open source Python projects, which includes a ground truth installation process for each target repository. Further, we propose Installamatic, an agent which aims to perform and verify the installation of a given repository by searching for relevant instructions from documentation in the repository. Empirical experiments reveal that that 55% of the studied repositories can be automatically installed by our agent at least one out of ten times. Through further analysis, we identify the common causes for our agent's inability to install a repository, discuss the challenges faced in the design and implementation of such an agent and consider the implications that such an agent could have for developers.
UItron: Foundational GUI Agent with Advanced Perception and Planning
GUI agent aims to enable automated operations on Mobile/PC devices, which is an important task toward achieving artificial general intelligence. The rapid advancement of VLMs accelerates the development of GUI agents, owing to their powerful capabilities in visual understanding and task planning. However, building a GUI agent remains a challenging task due to the scarcity of operation trajectories, the availability of interactive infrastructure, and the limitation of initial capabilities in foundation models. In this work, we introduce UItron, an open-source foundational model for automatic GUI agents, featuring advanced GUI perception, grounding, and planning capabilities. UItron highlights the necessity of systemic data engineering and interactive infrastructure as foundational components for advancing GUI agent development. It not only systematically studies a series of data engineering strategies to enhance training effects, but also establishes an interactive environment connecting both Mobile and PC devices. In training, UItron adopts supervised finetuning over perception and planning tasks in various GUI scenarios, and then develop a curriculum reinforcement learning framework to enable complex reasoning and exploration for online environments. As a result, UItron achieves superior performance in benchmarks of GUI perception, grounding, and planning. In particular, UItron highlights the interaction proficiency with top-tier Chinese mobile APPs, as we identified a general lack of Chinese capabilities even in state-of-the-art solutions. To this end, we manually collect over one million steps of operation trajectories across the top 100 most popular apps, and build the offline and online agent evaluation environments. Experimental results demonstrate that UItron achieves significant progress in Chinese app scenarios, propelling GUI agents one step closer to real-world application.
AppAgent v2: Advanced Agent for Flexible Mobile Interactions
With the advancement of Multimodal Large Language Models (MLLM), LLM-driven visual agents are increasingly impacting software interfaces, particularly those with graphical user interfaces. This work introduces a novel LLM-based multimodal agent framework for mobile devices. This framework, capable of navigating mobile devices, emulates human-like interactions. Our agent constructs a flexible action space that enhances adaptability across various applications including parser, text and vision descriptions. The agent operates through two main phases: exploration and deployment. During the exploration phase, functionalities of user interface elements are documented either through agent-driven or manual explorations into a customized structured knowledge base. In the deployment phase, RAG technology enables efficient retrieval and update from this knowledge base, thereby empowering the agent to perform tasks effectively and accurately. This includes performing complex, multi-step operations across various applications, thereby demonstrating the framework's adaptability and precision in handling customized task workflows. Our experimental results across various benchmarks demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios. Our code will be open source soon.
AgentCompass: Towards Reliable Evaluation of Agentic Workflows in Production
With the growing adoption of Large Language Models (LLMs) in automating complex, multi-agent workflows, organizations face mounting risks from errors, emergent behaviors, and systemic failures that current evaluation methods fail to capture. We present AgentCompass, the first evaluation framework designed specifically for post-deployment monitoring and debugging of agentic workflows. AgentCompass models the reasoning process of expert debuggers through a structured, multi-stage analytical pipeline: error identification and categorization, thematic clustering, quantitative scoring, and strategic summarization. The framework is further enhanced with a dual memory system-episodic and semantic-that enables continual learning across executions. Through collaborations with design partners, we demonstrate the framework's practical utility on real-world deployments, before establishing its efficacy against the publicly available TRAIL benchmark. AgentCompass achieves state-of-the-art results on key metrics, while uncovering critical issues missed in human annotations, underscoring its role as a robust, developer-centric tool for reliable monitoring and improvement of agentic systems in production.
ARE: Scaling Up Agent Environments and Evaluations
We introduce Meta Agents Research Environments (ARE), a research platform for scalable creation of environments, integration of synthetic or real applications, and execution of agentic orchestrations. ARE provides simple abstractions to build complex and diverse environments, each with their own rules, tools, content, and verifiers, helping to bridge the gap between model development and real-world deployment. We also propose Gaia2, a benchmark built in ARE and designed to measure general agent capabilities. Beyond search and execution, Gaia2 requires agents to handle ambiguities and noise, adapt to dynamic environments, collaborate with other agents, and operate under temporal constraints. Unlike prior benchmarks, Gaia2 runs asynchronously, surfacing new failure modes that are invisible in static settings. Our experiments show that no system dominates across the intelligence spectrum: stronger reasoning often comes at the cost of efficiency, and budget scaling curves plateau, highlighting the need for new architectures and adaptive compute strategies. Perhaps more importantly, ARE abstractions enable continuous extension of Gaia2 to other environments, empowering the community to rapidly create new benchmarks tailored to their domains. In AI's second half, progress increasingly depends on defining meaningful tasks and robust evaluations to drive frontier capabilities forward.
S-Agents: self-organizing agents in open-ended environment
Leveraging large language models (LLMs), autonomous agents have significantly improved, gaining the ability to handle a variety of tasks. In open-ended settings, optimizing collaboration for efficiency and effectiveness demands flexible adjustments. Despite this, current research mainly emphasizes fixed, task-oriented workflows and overlooks agent-centric organizational structures. Drawing inspiration from human organizational behavior, we introduce a self-organizing agent system (S-Agents) with a "tree of agents" structure for dynamic workflow, an "hourglass agent architecture" for balancing information priorities, and a "non-obstructive collaboration" method to allow asynchronous task execution among agents. This structure can autonomously coordinate a group of agents, efficiently addressing the challenges of an open and dynamic environment without human intervention. Our experiments demonstrate that S-Agents proficiently execute collaborative building tasks and resource collection in the Minecraft environment, validating their effectiveness.
DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback
The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Recent approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid and scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, with their feedback (in the form of errors or weak skills) being reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 3 diverse tasks (math, code, and VQA) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.
VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.
Generative Agents: Interactive Simulacra of Human Behavior
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Plural Voices, Single Agent: Towards Inclusive AI in Multi-User Domestic Spaces
Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora
Enhancing Trust in LLM-Based AI Automation Agents: New Considerations and Future Challenges
Trust in AI agents has been extensively studied in the literature, resulting in significant advancements in our understanding of this field. However, the rapid advancements in Large Language Models (LLMs) and the emergence of LLM-based AI agent frameworks pose new challenges and opportunities for further research. In the field of process automation, a new generation of AI-based agents has emerged, enabling the execution of complex tasks. At the same time, the process of building automation has become more accessible to business users via user-friendly no-code tools and training mechanisms. This paper explores these new challenges and opportunities, analyzes the main aspects of trust in AI agents discussed in existing literature, and identifies specific considerations and challenges relevant to this new generation of automation agents. We also evaluate how nascent products in this category address these considerations. Finally, we highlight several challenges that the research community should address in this evolving landscape.
AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications
Driven by rapid advancements of Large Language Models (LLMs), agents are empowered to combine intrinsic knowledge with dynamic tool use, greatly enhancing their capacity to address real-world tasks. In line with such an evolution, AgentScope introduces major improvements in a new version (1.0), towards comprehensively supporting flexible and efficient tool-based agent-environment interactions for building agentic applications. Specifically, we abstract foundational components essential for agentic applications and provide unified interfaces and extensible modules, enabling developers to easily leverage the latest progress, such as new models and MCPs. Furthermore, we ground agent behaviors in the ReAct paradigm and offer advanced agent-level infrastructure based on a systematic asynchronous design, which enriches both human-agent and agent-agent interaction patterns while improving execution efficiency. Building on this foundation, we integrate several built-in agents tailored to specific practical scenarios. AgentScope also includes robust engineering support for developer-friendly experiences. We provide a scalable evaluation module with a visual studio interface, making the development of long-trajectory agentic applications more manageable and easier to trace. In addition, AgentScope offers a runtime sandbox to ensure safe agent execution and facilitates rapid deployment in production environments. With these enhancements, AgentScope provides a practical foundation for building scalable, adaptive, and effective agentic applications.
Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining
Digital agents are increasingly employed to automate tasks in interactive digital environments such as web pages, software applications, and operating systems. While text-based agents built on Large Language Models (LLMs) often require frequent updates due to platform-specific APIs, visual agents leveraging Multimodal Large Language Models (MLLMs) offer enhanced adaptability by interacting directly with Graphical User Interfaces (GUIs). However, these agents face significant challenges in visual perception, particularly when handling high-resolution, visually complex digital environments. This paper introduces Iris, a foundational visual agent that addresses these challenges through two key innovations: Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL). ISC dynamically identifies and prioritizes visually dense regions using a edge detection algorithm, enabling efficient processing by allocating more computational resources to areas with higher information density. SRDL enhances the agent's ability to handle complex tasks by leveraging a dual-learning loop, where improvements in referring (describing UI elements) reinforce grounding (locating elements) and vice versa, all without requiring additional annotated data. Empirical evaluations demonstrate that Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations, outperforming methods using 10x more training data. These improvements further translate to significant gains in both web and OS agent downstream tasks.
Agent AI: Surveying the Horizons of Multimodal Interaction
Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
VC-Agent: An Interactive Agent for Customized Video Dataset Collection
Facing scaling laws, video data from the internet becomes increasingly important. However, collecting extensive videos that meet specific needs is extremely labor-intensive and time-consuming. In this work, we study the way to expedite this collection process and propose VC-Agent, the first interactive agent that is able to understand users' queries and feedback, and accordingly retrieve/scale up relevant video clips with minimal user input. Specifically, considering the user interface, our agent defines various user-friendly ways for the user to specify requirements based on textual descriptions and confirmations. As for agent functions, we leverage existing multi-modal large language models to connect the user's requirements with the video content. More importantly, we propose two novel filtering policies that can be updated when user interaction is continually performed. Finally, we provide a new benchmark for personalized video dataset collection, and carefully conduct the user study to verify our agent's usage in various real scenarios. Extensive experiments demonstrate the effectiveness and efficiency of our agent for customized video dataset collection. Project page: https://allenyidan.github.io/vcagent_page/.
An Illusion of Progress? Assessing the Current State of Web Agents
As digitalization and cloud technologies evolve, the web is becoming increasingly important in the modern society. Autonomous web agents based on large language models (LLMs) hold a great potential in work automation. It is therefore important to accurately measure and monitor the progression of their capabilities. In this work, we conduct a comprehensive and rigorous assessment of the current state of web agents. Our results depict a very different picture of the competency of current agents, suggesting over-optimism in previously reported results. This gap can be attributed to shortcomings in existing benchmarks. We introduce Online-Mind2Web, an online evaluation benchmark consisting of 300 diverse and realistic tasks spanning 136 websites. It enables us to evaluate web agents under a setting that approximates how real users use these agents. To facilitate more scalable evaluation and development, we also develop a novel LLM-as-a-Judge automatic evaluation method and show that it can achieve around 85% agreement with human judgment, substantially higher than existing methods. Finally, we present the first comprehensive comparative analysis of current web agents, highlighting both their strengths and limitations to inspire future research.
Building reliable sim driving agents by scaling self-play
Simulation agents are essential for designing and testing systems that interact with humans, such as autonomous vehicles (AVs). These agents serve various purposes, from benchmarking AV performance to stress-testing the system's limits, but all use cases share a key requirement: reliability. A simulation agent should behave as intended by the designer, minimizing unintended actions like collisions that can compromise the signal-to-noise ratio of analyses. As a foundation for reliable sim agents, we propose scaling self-play to thousands of scenarios on the Waymo Open Motion Dataset under semi-realistic limits on human perception and control. Training from scratch on a single GPU, our agents nearly solve the full training set within a day. They generalize effectively to unseen test scenes, achieving a 99.8% goal completion rate with less than 0.8% combined collision and off-road incidents across 10,000 held-out scenarios. Beyond in-distribution generalization, our agents show partial robustness to out-of-distribution scenes and can be fine-tuned in minutes to reach near-perfect performance in those cases. Demonstrations of agent behaviors can be found at this link. We open-source both the pre-trained agents and the complete code base. Demonstrations of agent behaviors can be found at https://sites.google.com/view/reliable-sim-agents.
Human-centered In-building Embodied Delivery Benchmark
Recently, the concept of embodied intelligence has been widely accepted and popularized, leading people to naturally consider the potential for commercialization in this field. In this work, we propose a specific commercial scenario simulation, human-centered in-building embodied delivery. Furthermore, for this scenario, we have developed a brand-new virtual environment system from scratch, constructing a multi-level connected building space modeled after a polar research station. This environment also includes autonomous human characters and robots with grasping and mobility capabilities, as well as a large number of interactive items. Based on this environment, we have built a delivery dataset containing 13k language instructions to guide robots in providing services. We simulate human behavior through human characters and sample their various needs in daily life. Finally, we proposed a method centered around a large multimodal model to serve as the baseline system for this dataset. Compared to past embodied data work, our work focuses on a virtual environment centered around human-robot interaction for commercial scenarios. We believe this will bring new perspectives and exploration angles to the embodied community.
Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
