- Curves, Jacobians, and Cryptography The main purpose of this paper is to give an overview over the theory of abelian varieties, with main focus on Jacobian varieties of curves reaching from well-known results till to latest developments and their usage in cryptography. In the first part we provide the necessary mathematical background on abelian varieties, their torsion points, Honda-Tate theory, Galois representations, with emphasis on Jacobian varieties and hyperelliptic Jacobians. In the second part we focus on applications of abelian varieties on cryptography and treating separately, elliptic curve cryptography, genus 2 and 3 cryptography, including Diffie-Hellman Key Exchange, index calculus in Picard groups, isogenies of Jacobians via correspondences and applications to discrete logarithms. Several open problems and new directions are suggested. 2 authors · Jul 13, 2018
- Further Generalizations of the Jaccard Index Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks. 1 authors · Oct 18, 2021
- FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search Approximate nearest neighbor search (ANNS) is a fundamental building block in information retrieval with graph-based indices being the current state-of-the-art and widely used in the industry. Recent advances in graph-based indices have made it possible to index and search billion-point datasets with high recall and millisecond-level latency on a single commodity machine with an SSD. However, existing graph algorithms for ANNS support only static indices that cannot reflect real-time changes to the corpus required by many key real-world scenarios (e.g. index of sentences in documents, email, or a news index). To overcome this drawback, the current industry practice for manifesting updates into such indices is to periodically re-build these indices, which can be prohibitively expensive. In this paper, we present the first graph-based ANNS index that reflects corpus updates into the index in real-time without compromising on search performance. Using update rules for this index, we design FreshDiskANN, a system that can index over a billion points on a workstation with an SSD and limited memory, and support thousands of concurrent real-time inserts, deletes and searches per second each, while retaining >95% 5-recall@5. This represents a 5-10x reduction in the cost of maintaining freshness in indices when compared to existing methods. 4 authors · May 20, 2021
1 DSI++: Updating Transformer Memory with New Documents Differentiable Search Indices (DSIs) encode a corpus of documents in model parameters and use the same model to answer user queries directly. Despite the strong performance of DSI models, deploying them in situations where the corpus changes over time is computationally expensive because reindexing the corpus requires re-training the model. In this work, we introduce DSI++, a continual learning challenge for DSI to incrementally index new documents while being able to answer queries related to both previously and newly indexed documents. Across different model scales and document identifier representations, we show that continual indexing of new documents leads to considerable forgetting of previously indexed documents. We also hypothesize and verify that the model experiences forgetting events during training, leading to unstable learning. To mitigate these issues, we investigate two approaches. The first focuses on modifying the training dynamics. Flatter minima implicitly alleviate forgetting, so we optimize for flatter loss basins and show that the model stably memorizes more documents (+12%). Next, we introduce a generative memory to sample pseudo-queries for documents and supplement them during continual indexing to prevent forgetting for the retrieval task. Extensive experiments on novel continual indexing benchmarks based on Natural Questions (NQ) and MS MARCO demonstrate that our proposed solution mitigates forgetting significantly. Concretely, it improves the average Hits@10 by +21.1% over competitive baselines for NQ and requires 6 times fewer model updates compared to re-training the DSI model for incrementally indexing five corpora in a sequence. 9 authors · Dec 19, 2022
- Superposition for Lambda-Free Higher-Order Logic We introduce refutationally complete superposition calculi for intentional and extensional clausal lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic. 4 authors · May 5, 2020
- Multi-index Based Solution Theory to the Φ^4 Equation in the Full Subcritical Regime We obtain (small-parameter) well-posedness for the (space-time periodic) Phi^4 equation in the full subcritical regime in the context of regularity structures based on multi-indices. As opposed to Hairer's more extrinsic tree-based setting, due to the intrinsic description encoded by multi-indices, it is not possible to obtain a solution theory via the standard fixed-point argument. Instead, we develop a more intrinsic approach for existence using a variant of the continuity method from classical PDE theory based on a priori estimates for a new `robust' formulation of the equation. This formulation also allows us to obtain uniqueness of solutions and continuity of the solution map in the model norm even at the limit of vanishing regularisation scale. Since our proof relies on the structure of the nonlinearity in only a mild way, we expect the same ideas to be sufficient to treat a more general class of equations. 3 authors · Mar 3, 2025
- Reverse derivative categories The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts. 7 authors · Oct 15, 2019