new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

Beyond Imitation: Reinforcement Learning for Active Latent Planning

Aiming at efficient and dense chain-of-thought (CoT) reasoning, latent reasoning methods fine-tune Large Language Models (LLMs) to substitute discrete language tokens with continuous latent tokens. These methods consume fewer tokens compared to the conventional language CoT reasoning and have the potential to plan in a dense latent space. However, current latent tokens are generally supervised based on imitating language labels. Considering that there can be multiple equivalent but diverse CoT labels for a question, passively imitating an arbitrary one may lead to inferior latent token representations and latent reasoning policies, undermining the potential planning ability and resulting in clear gaps between training and testing. In this work, we emphasize the importance of active planning over the representation space of latent tokens in achieving the optimal latent reasoning policy. So, we propose the Active Latent Planning method (ATP-Latent), which models the supervision process of latent tokens as a conditional variational auto-encoder (VAE) to obtain a smoother latent space. Moreover, to facilitate the most reasonable latent reasoning policy, ATP-Latent conducts reinforcement learning (RL) with an auxiliary coherence reward, which is calculated based on the consistency between VAE-decoded contents of latent tokens, enabling a guided RL process. In experiments on LLaMA-1B, ATP-Latent demonstrates +4.1\% accuracy and -3.3\% tokens on four benchmarks compared to advanced baselines. Codes are available on https://github.com/zz1358m/ATP-Latent-master.

  • 2 authors
·
Jan 29 4

iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning

Large language models (LLMs), when guided by explicit textual plans, can perform reliable step-by-step reasoning during problem-solving. However, generating accurate and effective textual plans remains challenging due to LLM hallucinations and the high diversity of task-specific questions. To address this, we draw inspiration from human Implicit Cognition (IC), the subconscious process by which decisions are guided by compact, generalized patterns learned from past experiences without requiring explicit verbalization. We propose iCLP, a novel framework that enables LLMs to adaptively generate latent plans (LPs), which are compact encodings of effective reasoning instructions. iCLP first distills explicit plans from existing step-by-step reasoning trajectories. It then learns discrete representations of these plans via a vector-quantized autoencoder coupled with a codebook. Finally, by fine-tuning LLMs on paired latent plans and corresponding reasoning steps, the models learn to perform implicit planning during reasoning. Experimental results on mathematical reasoning and code generation tasks demonstrate that, with iCLP, LLMs can plan in latent space while reasoning in language space. This approach yields significant improvements in both accuracy and efficiency and, crucially, demonstrates strong cross-domain generalization while preserving the interpretability of chain-of-thought reasoning.

  • 2 authors
·
Dec 30, 2025

VILP: Imitation Learning with Latent Video Planning

In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.

  • 3 authors
·
Feb 3, 2025

Think Before You Move: Latent Motion Reasoning for Text-to-Motion Generation

Current state-of-the-art paradigms predominantly treat Text-to-Motion (T2M) generation as a direct translation problem, mapping symbolic language directly to continuous poses. While effective for simple actions, this System 1 approach faces a fundamental theoretical bottleneck we identify as the Semantic-Kinematic Impedance Mismatch: the inherent difficulty of grounding semantically dense, discrete linguistic intent into kinematically dense, high-frequency motion data in a single shot. In this paper, we argue that the solution lies in an architectural shift towards Latent System 2 Reasoning. Drawing inspiration from Hierarchical Motor Control in cognitive science, we propose Latent Motion Reasoning (LMR) that reformulates generation as a two-stage Think-then-Act decision process. Central to LMR is a novel Dual-Granularity Tokenizer that disentangles motion into two distinct manifolds: a compressed, semantically rich Reasoning Latent for planning global topology, and a high-frequency Execution Latent for preserving physical fidelity. By forcing the model to autoregressively reason (plan the coarse trajectory) before it moves (instantiates the frames), we effectively bridge the ineffability gap between language and physics. We demonstrate LMR's versatility by implementing it for two representative baselines: T2M-GPT (discrete) and MotionStreamer (continuous). Extensive experiments show that LMR yields non-trivial improvements in both semantic alignment and physical plausibility, validating that the optimal substrate for motion planning is not natural language, but a learned, motion-aligned concept space. Codes and demos can be found in https://chenhaoqcdyq.github.io/LMR/{https://chenhaoqcdyq.github.io/LMR/}

  • 10 authors
·
Dec 30, 2025

WorldRFT: Latent World Model Planning with Reinforcement Fine-Tuning for Autonomous Driving

Latent World Models enhance scene representation through temporal self-supervised learning, presenting a perception annotation-free paradigm for end-to-end autonomous driving. However, the reconstruction-oriented representation learning tangles perception with planning tasks, leading to suboptimal optimization for planning. To address this challenge, we propose WorldRFT, a planning-oriented latent world model framework that aligns scene representation learning with planning via a hierarchical planning decomposition and local-aware interactive refinement mechanism, augmented by reinforcement learning fine-tuning (RFT) to enhance safety-critical policy performance. Specifically, WorldRFT integrates a vision-geometry foundation model to improve 3D spatial awareness, employs hierarchical planning task decomposition to guide representation optimization, and utilizes local-aware iterative refinement to derive a planning-oriented driving policy. Furthermore, we introduce Group Relative Policy Optimization (GRPO), which applies trajectory Gaussianization and collision-aware rewards to fine-tune the driving policy, yielding systematic improvements in safety. WorldRFT achieves state-of-the-art (SOTA) performance on both open-loop nuScenes and closed-loop NavSim benchmarks. On nuScenes, it reduces collision rates by 83% (0.30% -> 0.05%). On NavSim, using camera-only sensors input, it attains competitive performance with the LiDAR-based SOTA method DiffusionDrive (87.8 vs. 88.1 PDMS).

  • 10 authors
·
Dec 22, 2025

Efficient Robotic Policy Learning via Latent Space Backward Planning

Current robotic planning methods often rely on predicting multi-frame images with full pixel details. While this fine-grained approach can serve as a generic world model, it introduces two significant challenges for downstream policy learning: substantial computational costs that hinder real-time deployment, and accumulated inaccuracies that can mislead action extraction. Planning with coarse-grained subgoals partially alleviates efficiency issues. However, their forward planning schemes can still result in off-task predictions due to accumulation errors, leading to misalignment with long-term goals. This raises a critical question: Can robotic planning be both efficient and accurate enough for real-time control in long-horizon, multi-stage tasks? To address this, we propose a Latent Space Backward Planning scheme (LBP), which begins by grounding the task into final latent goals, followed by recursively predicting intermediate subgoals closer to the current state. The grounded final goal enables backward subgoal planning to always remain aware of task completion, facilitating on-task prediction along the entire planning horizon. The subgoal-conditioned policy incorporates a learnable token to summarize the subgoal sequences and determines how each subgoal guides action extraction. Through extensive simulation and real-robot long-horizon experiments, we show that LBP outperforms existing fine-grained and forward planning methods, achieving SOTA performance. Project Page: https://lbp-authors.github.io

  • 9 authors
·
May 11, 2025

TD-JEPA: Latent-predictive Representations for Zero-Shot Reinforcement Learning

Latent prediction--where agents learn by predicting their own latents--has emerged as a powerful paradigm for training general representations in machine learning. In reinforcement learning (RL), this approach has been explored to define auxiliary losses for a variety of settings, including reward-based and unsupervised RL, behavior cloning, and world modeling. While existing methods are typically limited to single-task learning, one-step prediction, or on-policy trajectory data, we show that temporal difference (TD) learning enables learning representations predictive of long-term latent dynamics across multiple policies from offline, reward-free transitions. Building on this, we introduce TD-JEPA, which leverages TD-based latent-predictive representations into unsupervised RL. TD-JEPA trains explicit state and task encoders, a policy-conditioned multi-step predictor, and a set of parameterized policies directly in latent space. This enables zero-shot optimization of any reward function at test time. Theoretically, we show that an idealized variant of TD-JEPA avoids collapse with proper initialization, and learns encoders that capture a low-rank factorization of long-term policy dynamics, while the predictor recovers their successor features in latent space. Empirically, TD-JEPA matches or outperforms state-of-the-art baselines on locomotion, navigation, and manipulation tasks across 13 datasets in ExoRL and OGBench, especially in the challenging setting of zero-shot RL from pixels.

  • 5 authors
·
Oct 1, 2025

Learning Latent Action World Models In The Wild

Agents capable of reasoning and planning in the real world require the ability of predicting the consequences of their actions. While world models possess this capability, they most often require action labels, that can be complex to obtain at scale. This motivates the learning of latent action models, that can learn an action space from videos alone. Our work addresses the problem of learning latent actions world models on in-the-wild videos, expanding the scope of existing works that focus on simple robotics simulations, video games, or manipulation data. While this allows us to capture richer actions, it also introduces challenges stemming from the video diversity, such as environmental noise, or the lack of a common embodiment across videos. To address some of the challenges, we discuss properties that actions should follow as well as relevant architectural choices and evaluations. We find that continuous, but constrained, latent actions are able to capture the complexity of actions from in-the-wild videos, something that the common vector quantization does not. We for example find that changes in the environment coming from agents, such as humans entering the room, can be transferred across videos. This highlights the capability of learning actions that are specific to in-the-wild videos. In the absence of a common embodiment across videos, we are mainly able to learn latent actions that become localized in space, relative to the camera. Nonetheless, we are able to train a controller that maps known actions to latent ones, allowing us to use latent actions as a universal interface and solve planning tasks with our world model with similar performance as action-conditioned baselines. Our analyses and experiments provide a step towards scaling latent action models to the real world.

  • 6 authors
·
Jan 8

LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning

Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.

  • 7 authors
·
Oct 6, 2025

Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs

While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.

microsoft Microsoft
·
Oct 28, 2025 1

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

Graph schemas as abstractions for transfer learning, inference, and planning

Transferring latent structure from one environment or problem to another is a mechanism by which humans and animals generalize with very little data. Inspired by cognitive and neurobiological insights, we propose graph schemas as a mechanism of abstraction for transfer learning. Graph schemas start with latent graph learning where perceptually aliased observations are disambiguated in the latent space using contextual information. Latent graph learning is also emerging as a new computational model of the hippocampus to explain map learning and transitive inference. Our insight is that a latent graph can be treated as a flexible template -- a schema -- that models concepts and behaviors, with slots that bind groups of latent nodes to the specific observations or groundings. By treating learned latent graphs (schemas) as prior knowledge, new environments can be quickly learned as compositions of schemas and their newly learned bindings. We evaluate graph schemas on two previously published challenging tasks: the memory & planning game and one-shot StreetLearn, which are designed to test rapid task solving in novel environments. Graph schemas can be learned in far fewer episodes than previous baselines, and can model and plan in a few steps in novel variations of these tasks. We also demonstrate learning, matching, and reusing graph schemas in more challenging 2D and 3D environments with extensive perceptual aliasing and size variations, and show how different schemas can be composed to model larger and more complex environments. To summarize, our main contribution is a unified system, inspired and grounded in cognitive science, that facilitates rapid transfer learning of new environments using schemas via map-induction and composition that handles perceptual aliasing.

  • 9 authors
·
Feb 14, 2023

Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos

In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.

  • 8 authors
·
Jul 4, 2025

Seer: Language Instructed Video Prediction with Latent Diffusion Models

Imagining the future trajectory is the key for robots to make sound planning and successfully reach their goals. Therefore, text-conditioned video prediction (TVP) is an essential task to facilitate general robot policy learning. To tackle this task and empower robots with the ability to foresee the future, we propose a sample and computation-efficient model, named Seer, by inflating the pretrained text-to-image (T2I) stable diffusion models along the temporal axis. We enhance the U-Net and language conditioning model by incorporating computation-efficient spatial-temporal attention. Furthermore, we introduce a novel Frame Sequential Text Decomposer module that dissects a sentence's global instruction into temporally aligned sub-instructions, ensuring precise integration into each frame of generation. Our framework allows us to effectively leverage the extensive prior knowledge embedded in pretrained T2I models across the frames. With the adaptable-designed architecture, Seer makes it possible to generate high-fidelity, coherent, and instruction-aligned video frames by fine-tuning a few layers on a small amount of data. The experimental results on Something Something V2 (SSv2), Bridgedata and EpicKitchens-100 datasets demonstrate our superior video prediction performance with around 480-GPU hours versus CogVideo with over 12,480-GPU hours: achieving the 31% FVD improvement compared to the current SOTA model on SSv2 and 83.7% average preference in the human evaluation.

  • 5 authors
·
Mar 26, 2023

Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes

We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.

  • 3 authors
·
Oct 20, 2022

Reasoning Palette: Modulating Reasoning via Latent Contextualization for Controllable Exploration for (V)LMs

Exploration capacity shapes both inference-time performance and reinforcement learning (RL) training for large (vision-) language models, as stochastic sampling often yields redundant reasoning paths with little high-level diversity. This paper proposes Reasoning Palette, a novel latent-modulation framework that endows the model with a stochastic latent variable for strategic contextualization, guiding its internal planning prior to token generation. This latent context is inferred from the mean-pooled embedding of a question-answer pair via a variational autoencoder (VAE), where each sampled latent potentially encodes a distinct reasoning context. During inference, a sampled latent is decoded into learnable token prefixes and prepended to the input prompt, modulating the model's internal reasoning trajectory. In this way, the model performs internal sampling over reasoning strategies prior to output generation, which shapes the style and structure of the entire response sequence. A brief supervised fine-tuning (SFT) warm-up phase allows the model to adapt to this latent conditioning. Within RL optimization, Reasoning Palette facilitates structured exploration by enabling on-demand injection for diverse reasoning modes, significantly enhancing exploration efficiency and sustained learning capability. Experiments across multiple reasoning benchmarks demonstrate that our method enables interpretable and controllable control over the (vision-) language model's strategic behavior, thereby achieving consistent performance gains over standard RL methods.

alibaba-inc alibaba-inc
·
Dec 18, 2025 2

Cosmos Policy: Fine-Tuning Video Models for Visuomotor Control and Planning

Recent video generation models demonstrate remarkable ability to capture complex physical interactions and scene evolution over time. To leverage their spatiotemporal priors, robotics works have adapted video models for policy learning but introduce complexity by requiring multiple stages of post-training and new architectural components for action generation. In this work, we introduce Cosmos Policy, a simple approach for adapting a large pretrained video model (Cosmos-Predict2) into an effective robot policy through a single stage of post-training on the robot demonstration data collected on the target platform, with no architectural modifications. Cosmos Policy learns to directly generate robot actions encoded as latent frames within the video model's latent diffusion process, harnessing the model's pretrained priors and core learning algorithm to capture complex action distributions. Additionally, Cosmos Policy generates future state images and values (expected cumulative rewards), which are similarly encoded as latent frames, enabling test-time planning of action trajectories with higher likelihood of success. In our evaluations, Cosmos Policy achieves state-of-the-art performance on the LIBERO and RoboCasa simulation benchmarks (98.5% and 67.1% average success rates, respectively) and the highest average score in challenging real-world bimanual manipulation tasks, outperforming strong diffusion policies trained from scratch, video model-based policies, and state-of-the-art vision-language-action models fine-tuned on the same robot demonstrations. Furthermore, given policy rollout data, Cosmos Policy can learn from experience to refine its world model and value function and leverage model-based planning to achieve even higher success rates in challenging tasks. We release code, models, and training data at https://research.nvidia.com/labs/dir/cosmos-policy/

nvidia NVIDIA
·
Jan 22 2

Next-Latent Prediction Transformers Learn Compact World Models

Transformers replace recurrence with a memory that grows with sequence length and self-attention that enables ad-hoc look ups over past tokens. Consequently, they lack an inherent incentive to compress history into compact latent states with consistent transition rules. This often leads to learning solutions that generalize poorly. We introduce Next-Latent Prediction (NextLat), which extends standard next-token training with self-supervised predictions in the latent space. Specifically, NextLat trains a transformer to learn latent representations that are predictive of its next latent state given the next output token. Theoretically, we show that these latents provably converge to belief states, compressed information of the history necessary to predict the future. This simple auxiliary objective also injects a recurrent inductive bias into transformers, while leaving their architecture, parallel training, and inference unchanged. NextLat effectively encourages the transformer to form compact internal world models with its own belief states and transition dynamics -- a crucial property absent in standard next-token prediction transformers. Empirically, across benchmarks targeting core sequence modeling competencies -- world modeling, reasoning, planning, and language modeling -- NextLat demonstrates significant gains over standard next-token training in downstream accuracy, representation compression, and lookahead planning. NextLat stands as a simple and efficient paradigm for shaping transformer representations toward stronger generalization.

  • 8 authors
·
Nov 8, 2025

Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective

Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.

  • 6 authors
·
Dec 1, 2025

VEDIT: Latent Prediction Architecture For Procedural Video Representation Learning

Procedural video representation learning is an active research area where the objective is to learn an agent which can anticipate and forecast the future given the present video input, typically in conjunction with textual annotations. Prior works often rely on large-scale pretraining of visual encoders and prediction models with language supervision. However, the necessity and effectiveness of extending compute intensive pretraining to learn video clip sequences with noisy text supervision have not yet been fully validated by previous works. In this work, we show that a strong off-the-shelf frozen pretrained visual encoder, along with a well designed prediction model, can achieve state-of-the-art (SoTA) performance in forecasting and procedural planning without the need for pretraining the prediction model, nor requiring additional supervision from language or ASR. Instead of learning representations from pixel space, our method utilizes the latent embedding space of publicly available vision encoders. By conditioning on frozen clip-level embeddings from observed steps to predict the actions of unseen steps, our prediction model is able to learn robust representations for forecasting through iterative denoising - leveraging the recent advances in diffusion transformers (Peebles & Xie, 2023). Empirical studies over a total of five procedural learning tasks across four datasets (NIV, CrossTask, COIN and Ego4D-v2) show that our model advances the strong baselines in long-horizon action anticipation (+2.6% in Verb ED@20, +3.1% in Noun ED@20), and significantly improves the SoTA in step forecasting (+5.0%), task classification (+3.8%), and procedure planning tasks (up to +2.28% in success rate, +3.39% in mAcc, and +0.90% in mIoU).

  • 7 authors
·
Oct 4, 2024

Training Large Language Models to Reason in a Continuous Latent Space

Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.

  • 7 authors
·
Dec 9, 2024 7

Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems

While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose Agent Primitives, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3times-4times compared to text-based MAS, while incurring only 1.3times-1.6times overhead relative to single-agent inference and providing more stable performance across model backbones.

MemGen: Weaving Generative Latent Memory for Self-Evolving Agents

Agent memory shapes how Large Language Model (LLM)-powered agents, akin to the human brain, progressively refine themselves through environment interactions. Existing paradigms remain constrained: parametric memory forcibly adjusts model parameters, and retrieval-based memory externalizes experience into structured databases, yet neither captures the fluid interweaving of reasoning and memory that underlies human cognition. To address this gap, we propose MemGen, a dynamic generative memory framework that equips agents with a human-esque cognitive faculty. It consists of a memory trigger, which monitors the agent's reasoning state to decide explicit memory invocation, and a memory weaver, which takes the agent's current state as stimulus to construct a latent token sequence as machine-native memory to enrich its reasoning. In this way, MemGen enables agents to recall and augment latent memory throughout reasoning, producing a tightly interwoven cycle of memory and cognition. Extensive experiments across eight benchmarks show that MemGen surpasses leading external memory systems such as ExpeL and AWM by up to 38.22%, exceeds GRPO by up to 13.44%, and exhibits strong cross-domain generalization ability. More importantly, we find that without explicit supervision, MemGen spontaneously evolves distinct human-like memory faculties, including planning memory, procedural memory, and working memory, suggesting an emergent trajectory toward more naturalistic forms of machine cognition.

  • 3 authors
·
Sep 29, 2025

Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models

Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.

  • 2 authors
·
Apr 14, 2025

Think2Drive: Efficient Reinforcement Learning by Thinking in Latent World Model for Quasi-Realistic Autonomous Driving (in CARLA-v2)

Real-world autonomous driving (AD) especially urban driving involves many corner cases. The lately released AD simulator CARLA v2 adds 39 common events in the driving scene, and provide more quasi-realistic testbed compared to CARLA v1. It poses new challenge to the community and so far no literature has reported any success on the new scenarios in V2 as existing works mostly have to rely on specific rules for planning yet they cannot cover the more complex cases in CARLA v2. In this work, we take the initiative of directly training a planner and the hope is to handle the corner cases flexibly and effectively, which we believe is also the future of AD. To our best knowledge, we develop the first model-based RL method named Think2Drive for AD, with a world model to learn the transitions of the environment, and then it acts as a neural simulator to train the planner. This paradigm significantly boosts the training efficiency due to the low dimensional state space and parallel computing of tensors in the world model. As a result, Think2Drive is able to run in an expert-level proficiency in CARLA v2 within 3 days of training on a single A6000 GPU, and to our best knowledge, so far there is no reported success (100\% route completion)on CARLA v2. We also propose CornerCase-Repository, a benchmark that supports the evaluation of driving models by scenarios. Additionally, we propose a new and balanced metric to evaluate the performance by route completion, infraction number, and scenario density, so that the driving score could give more information about the actual driving performance.

  • 4 authors
·
Feb 26, 2024

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Despite their stellar performance on a wide range of tasks, including in-context tasks only revealed during inference, vanilla transformers and variants trained for next-token predictions (a) do not learn an explicit world model of their environment which can be flexibly queried and (b) cannot be used for planning or navigation. In this paper, we consider partially observed environments (POEs), where an agent receives perceptually aliased observations as it navigates, which makes path planning hard. We introduce a transformer with (multiple) discrete bottleneck(s), TDB, whose latent codes learn a compressed representation of the history of observations and actions. After training a TDB to predict the future observation(s) given the history, we extract interpretable cognitive maps of the environment from its active bottleneck(s) indices. These maps are then paired with an external solver to solve (constrained) path planning problems. First, we show that a TDB trained on POEs (a) retains the near perfect predictive performance of a vanilla transformer or an LSTM while (b) solving shortest path problems exponentially faster. Second, a TDB extracts interpretable representations from text datasets, while reaching higher in-context accuracy than vanilla sequence models. Finally, in new POEs, a TDB (a) reaches near-perfect in-context accuracy, (b) learns accurate in-context cognitive maps (c) solves in-context path planning problems.

  • 5 authors
·
Jan 11, 2024

Midway Network: Learning Representations for Recognition and Motion from Latent Dynamics

Object recognition and motion understanding are key components of perception that complement each other. While self-supervised learning methods have shown promise in their ability to learn from unlabeled data, they have primarily focused on obtaining rich representations for either recognition or motion rather than both in tandem. On the other hand, latent dynamics modeling has been used in decision making to learn latent representations of observations and their transformations over time for control and planning tasks. In this work, we present Midway Network, a new self-supervised learning architecture that is the first to learn strong visual representations for both object recognition and motion understanding solely from natural videos, by extending latent dynamics modeling to this domain. Midway Network leverages a midway top-down path to infer motion latents between video frames, as well as a dense forward prediction objective and hierarchical structure to tackle the complex, multi-object scenes of natural videos. We demonstrate that after pretraining on two large-scale natural video datasets, Midway Network achieves strong performance on both semantic segmentation and optical flow tasks relative to prior self-supervised learning methods. We also show that Midway Network's learned dynamics can capture high-level correspondence via a novel analysis method based on forward feature perturbation.

  • 2 authors
·
Oct 7, 2025

FASTopoWM: Fast-Slow Lane Segment Topology Reasoning with Latent World Models

Lane segment topology reasoning provides comprehensive bird's-eye view (BEV) road scene understanding, which can serve as a key perception module in planning-oriented end-to-end autonomous driving systems. Existing lane topology reasoning methods often fall short in effectively leveraging temporal information to enhance detection and reasoning performance. Recently, stream-based temporal propagation method has demonstrated promising results by incorporating temporal cues at both the query and BEV levels. However, it remains limited by over-reliance on historical queries, vulnerability to pose estimation failures, and insufficient temporal propagation. To overcome these limitations, we propose FASTopoWM, a novel fast-slow lane segment topology reasoning framework augmented with latent world models. To reduce the impact of pose estimation failures, this unified framework enables parallel supervision of both historical and newly initialized queries, facilitating mutual reinforcement between the fast and slow systems. Furthermore, we introduce latent query and BEV world models conditioned on the action latent to propagate the state representations from past observations to the current timestep. This design substantially improves the performance of temporal perception within the slow pipeline. Extensive experiments on the OpenLane-V2 benchmark demonstrate that FASTopoWM outperforms state-of-the-art methods in both lane segment detection (37.4% v.s. 33.6% on mAP) and centerline perception (46.3% v.s. 41.5% on OLS).

  • 10 authors
·
Jul 31, 2025

Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning

Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.

  • 3 authors
·
Nov 14, 2022

A Survey on Latent Reasoning

Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.

  • 33 authors
·
Jul 8, 2025 3

Hybrid Latent Reasoning via Reinforcement Learning

Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.

  • 9 authors
·
May 23, 2025 2

Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures

Text-guided image generation has progressed rapidly in recent years, inspiring major breakthroughs in text-guided shape generation. Recently, it has been shown that using score distillation, one can successfully text-guide a NeRF model to generate a 3D object. We adapt the score distillation to the publicly available, and computationally efficient, Latent Diffusion Models, which apply the entire diffusion process in a compact latent space of a pretrained autoencoder. As NeRFs operate in image space, a naive solution for guiding them with latent score distillation would require encoding to the latent space at each guidance step. Instead, we propose to bring the NeRF to the latent space, resulting in a Latent-NeRF. Analyzing our Latent-NeRF, we show that while Text-to-3D models can generate impressive results, they are inherently unconstrained and may lack the ability to guide or enforce a specific 3D structure. To assist and direct the 3D generation, we propose to guide our Latent-NeRF using a Sketch-Shape: an abstract geometry that defines the coarse structure of the desired object. Then, we present means to integrate such a constraint directly into a Latent-NeRF. This unique combination of text and shape guidance allows for increased control over the generation process. We also show that latent score distillation can be successfully applied directly on 3D meshes. This allows for generating high-quality textures on a given geometry. Our experiments validate the power of our different forms of guidance and the efficiency of using latent rendering. Implementation is available at https://github.com/eladrich/latent-nerf

  • 5 authors
·
Nov 14, 2022

Latent Collaboration in Multi-Agent Systems

Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.

Gen-Verse Princeton-AI
·
Nov 25, 2025 13

Multimodal Procedural Planning via Dual Text-Image Prompting

Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: https://github.com/YujieLu10/MPP.

  • 6 authors
·
May 2, 2023

Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space

Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.

  • 11 authors
·
May 19, 2025 4

GenAD: Generative End-to-End Autonomous Driving

Directly producing planning results from raw sensors has been a long-desired solution for autonomous driving and has attracted increasing attention recently. Most existing end-to-end autonomous driving methods factorize this problem into perception, motion prediction, and planning. However, we argue that the conventional progressive pipeline still cannot comprehensively model the entire traffic evolution process, e.g., the future interaction between the ego car and other traffic participants and the structural trajectory prior. In this paper, we explore a new paradigm for end-to-end autonomous driving, where the key is to predict how the ego car and the surroundings evolve given past scenes. We propose GenAD, a generative framework that casts autonomous driving into a generative modeling problem. We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens. We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling. We further adopt a temporal model to capture the agent and ego movements in the latent space to generate more effective future trajectories. GenAD finally simultaneously performs motion prediction and planning by sampling distributions in the learned structural latent space conditioned on the instance tokens and using the learned temporal model to generate futures. Extensive experiments on the widely used nuScenes benchmark show that the proposed GenAD achieves state-of-the-art performance on vision-centric end-to-end autonomous driving with high efficiency. Code: https://github.com/wzzheng/GenAD.

  • 5 authors
·
Feb 18, 2024

Simulating the Visual World with Artificial Intelligence: A Roadmap

The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.

  • 6 authors
·
Nov 11, 2025 3

SLIM: Skill Learning with Multiple Critics

Self-supervised skill learning aims to acquire useful behaviors that leverage the underlying dynamics of the environment. Latent variable models, based on mutual information maximization, have been successful in this task but still struggle in the context of robotic manipulation. As it requires impacting a possibly large set of degrees of freedom composing the environment, mutual information maximization fails alone in producing useful and safe manipulation behaviors. Furthermore, tackling this by augmenting skill discovery rewards with additional rewards through a naive combination might fail to produce desired behaviors. To address this limitation, we introduce SLIM, a multi-critic learning approach for skill discovery with a particular focus on robotic manipulation. Our main insight is that utilizing multiple critics in an actor-critic framework to gracefully combine multiple reward functions leads to a significant improvement in latent-variable skill discovery for robotic manipulation while overcoming possible interference occurring among rewards which hinders convergence to useful skills. Furthermore, in the context of tabletop manipulation, we demonstrate the applicability of our novel skill discovery approach to acquire safe and efficient motor primitives in a hierarchical reinforcement learning fashion and leverage them through planning, significantly surpassing baseline approaches for skill discovery.

  • 4 authors
·
Feb 1, 2024

Planner and Executor: Collaboration between Discrete Diffusion And Autoregressive Models in Reasoning

Current autoregressive language models (ARMs) achieve high accuracy but require long token sequences, making them costly. Discrete diffusion language models (DDLMs) enable parallel and flexible generation within a fixed number of steps and have recently emerged for their strong performance in complex reasoning and long-term planning tasks. We present a study exploring hybrid architectures that couple DDLMs with ARMs to assess whether their collaboration can yield complementary benefits. We first examine collaboration in text space, where one model plans the reasoning process and another executes the final answer based on that plan. We then extend this setup to latent-space communication, introducing a learned projector that maps DDLM latents into the ARM's embedding space, potentially bypassing some of the text-generation limitations of diffusion models. We find that shifting DDLM --> ARM communication from text space to latent space yields significant accuracy gains, for example increasing from 27.0% to 54.0% on DART-5 and from 0.0% to 14.0% on AIME24. We also find that combining a DDLM planner with an ARM executor can provide substantial computational savings with little to no impact on accuracy. For example, the latent-space pipeline, using 64 tokens for planning and roughly 5 for execution, surpasses Qwen3.1-7B on DART-5 and AIME, despite Qwen using 44 times more tokens. Overall, our study offers new insights into reasoning with DDLMs and highlights their potential in hybrid architectures.

  • 6 authors
·
Oct 16, 2025

Towards a Unified Understanding of Robot Manipulation: A Comprehensive Survey

Embodied intelligence has witnessed remarkable progress in recent years, driven by advances in computer vision, natural language processing, and the rise of large-scale multimodal models. Among its core challenges, robot manipulation stands out as a fundamental yet intricate problem, requiring the seamless integration of perception, planning, and control to enable interaction within diverse and unstructured environments. This survey presents a comprehensive overview of robotic manipulation, encompassing foundational background, task-organized benchmarks and datasets, and a unified taxonomy of existing methods. We extend the classical division between high-level planning and low-level control by broadening high-level planning to include language, code, motion, affordance, and 3D representations, while introducing a new taxonomy of low-level learning-based control grounded in training paradigms such as input modeling, latent learning, and policy learning. Furthermore, we provide the first dedicated taxonomy of key bottlenecks, focusing on data collection, utilization, and generalization, and conclude with an extensive review of real-world applications. Compared with prior surveys, our work offers both a broader scope and deeper insight, serving as an accessible roadmap for newcomers and a structured reference for experienced researchers. All related resources, including research papers, open-source datasets, and projects, are curated for the community at https://github.com/BaiShuanghao/Awesome-Robotics-Manipulation.

  • 18 authors
·
Oct 12, 2025

An Empirical Study of World Model Quantization

World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.

LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning

Chain-of-thought (CoT) prompting is a popular in-context learning (ICL) approach for large language models (LLMs), especially when tackling complex reasoning tasks. Traditional ICL approaches construct prompts using examples that contain questions similar to the input question. However, CoT prompting, which includes crucial intermediate reasoning steps (rationales) within its examples, necessitates selecting examples based on these rationales rather than the questions themselves. Existing methods require human experts or pre-trained LLMs to describe the skill, a high-level abstraction of rationales, to guide the selection. These methods, however, are often costly and difficult to scale. Instead, this paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales, with a latent variable called a reasoning skill. Concurrently, LaRS learns a reasoning policy to determine the required reasoning skill for a given question. Then the ICL examples are selected by aligning the reasoning skills between past examples and the question. This approach is theoretically grounded and compute-efficient, eliminating the need for auxiliary LLM inference or manual prompt design. Empirical results demonstrate that LaRS consistently outperforms SOTA skill-based selection methods, processing example banks four times faster, reducing LLM inferences during the selection stage by half, and showing greater robustness to sub-optimal example banks.

  • 6 authors
·
Dec 7, 2023

Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming

While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons.

  • 3 authors
·
Oct 15, 2024

PAN: A World Model for General, Interactable, and Long-Horizon World Simulation

A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.

  • 34 authors
·
Nov 12, 2025 4

SCOPE: Language Models as One-Time Teacher for Hierarchical Planning in Text Environments

Long-term planning in complex, text-based environments presents significant challenges due to open-ended action spaces, ambiguous observations, and sparse feedback. Recent research suggests that large language models (LLMs) encode rich semantic knowledge about the world, which can be valuable for guiding agents in high-level reasoning and planning across both embodied and purely textual settings. However, existing approaches often depend heavily on querying LLMs during training and inference, making them computationally expensive and difficult to deploy efficiently. In addition, these methods typically employ a pretrained, unaltered LLM whose parameters remain fixed throughout training, providing no opportunity for adaptation to the target task. To address these limitations, we introduce SCOPE (Subgoal-COnditioned Pretraining for Efficient planning), a one-shot hierarchical planner that leverages LLM-generated subgoals only at initialization to pretrain a lightweight student model. Unlike prior approaches that distill LLM knowledge by repeatedly prompting the model to adaptively generate subgoals during training, our method derives subgoals directly from example trajectories. This design removes the need for repeated LLM queries, significantly improving efficiency, though at the cost of reduced explainability and potentially suboptimal subgoals. Despite their suboptimality, our results on the TextCraft environment show that LLM-generated subgoals can still serve as a strong starting point for hierarchical goal decomposition in text-based planning tasks. Compared to the LLM-based hierarchical agent ADaPT (Prasad et al., 2024), which achieves a 0.52 success rate, our method reaches 0.56 and reduces inference time from 164.4 seconds to just 3.0 seconds.

  • 3 authors
·
Dec 10, 2025

Latent Thoughts Tuning: Bridging Context and Reasoning with Fused Information in Latent Tokens

While explicit Chain-of-Thought (CoT) equips Large Language Models (LLMs) with strong reasoning capabilities, it requires models to verbalize every intermediate step in text tokens, constraining the model thoughts to the discrete vocabulary space. Recently, reasoning in continuous latent space has emerged as a promising alternative, enabling more robust inference and flexible computation beyond discrete token constraints. However, current latent paradigms often suffer from feature collapse and instability, stemming from distribution mismatches when recurrently using hidden states as the input embeddings, or alignment issues when relying on assistant models. To address this, we propose Latent Thoughts Tuning (LT-Tuning), a framework that redefines how latent thoughts are constructed and deployed. Instead of relying solely on raw hidden states, our method introduces a Context-Prediction-Fusion mechanism that jointly leveraging contextual hidden states and predictive semantic guidance from the vocabulary embedding space. Combined with a progressive three-stage curriculum learning pipeline, LT-Tuning also enables dynamically switching between latent and explicit thinking modes. Experiments demonstrate that our method outperforms existing latent reasoning baselines, effectively mitigating feature collapse and achieving robust reasoning accuracy.

Reinventing Clinical Dialogue: Agentic Paradigms for LLM Enabled Healthcare Communication

Clinical dialogue represents a complex duality requiring both the empathetic fluency of natural conversation and the rigorous precision of evidence-based medicine. While Large Language Models possess unprecedented linguistic capabilities, their architectural reliance on reactive and stateless processing often favors probabilistic plausibility over factual veracity. This structural limitation has catalyzed a paradigm shift in medical AI from generative text prediction to agentic autonomy, where the model functions as a central reasoning engine capable of deliberate planning and persistent memory. Moving beyond existing reviews that primarily catalog downstream applications, this survey provides a first-principles analysis of the cognitive architecture underpinning this shift. We introduce a novel taxonomy structured along the orthogonal axes of knowledge source and agency objective to delineate the provenance of clinical knowledge against the system's operational scope. This framework facilitates a systematic analysis of the intrinsic trade-offs between creativity and reliability by categorizing methods into four archetypes: Latent Space Clinicians, Emergent Planners, Grounded Synthesizers, and Verifiable Workflow Automators. For each paradigm, we deconstruct the technical realization across the entire cognitive pipeline, encompassing strategic planning, memory management, action execution, collaboration, and evolution to reveal how distinct architectural choices balance the tension between autonomy and safety.

  • 5 authors
·
Dec 1, 2025 2

Tree-Planner: Efficient Close-loop Task Planning with Large Language Models

This paper studies close-loop task planning, which refers to the process of generating a sequence of skills (a plan) to accomplish a specific goal while adapting the plan based on real-time observations. Recently, prompting Large Language Models (LLMs) to generate actions iteratively has become a prevalent paradigm due to its superior performance and user-friendliness. However, this paradigm is plagued by two inefficiencies: high token consumption and redundant error correction, both of which hinder its scalability for large-scale testing and applications. To address these issues, we propose Tree-Planner, which reframes task planning with LLMs into three distinct phases: plan sampling, action tree construction, and grounded deciding. Tree-Planner starts by using an LLM to sample a set of potential plans before execution, followed by the aggregation of them to form an action tree. Finally, the LLM performs a top-down decision-making process on the tree, taking into account real-time environmental information. Experiments show that Tree-Planner achieves state-of-the-art performance while maintaining high efficiency. By decomposing LLM queries into a single plan-sampling call and multiple grounded-deciding calls, a considerable part of the prompt are less likely to be repeatedly consumed. As a result, token consumption is reduced by 92.2% compared to the previously best-performing model. Additionally, by enabling backtracking on the action tree as needed, the correction process becomes more flexible, leading to a 40.5% decrease in error corrections. Project page: https://tree-planner.github.io/

  • 10 authors
·
Oct 12, 2023

Latent Traversals in Generative Models as Potential Flows

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data.

  • 4 authors
·
Apr 25, 2023

Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

Large language model (LLM)-based agents have recently shown impressive progress in a variety of domains, including open-ended conversation and multi-step decision-making. However, applying these agents to social deduction games such as Werewolf, which requires both strategic decision-making and free-form language interaction, remains non-trivial. Traditional methods based on Counterfactual Regret Minimization (CFR) or reinforcement learning (RL) typically depend on a predefined action space, making them unsuitable for language games with unconstrained text action space. Meanwhile, pure LLM-based agents often suffer from intrinsic biases and require prohibitively large datasets for fine-tuning. We propose Latent Space Policy Optimization (LSPO), an iterative framework that addresses these challenges by first mapping free-form text to a discrete latent space, where methods like CFR and RL can learn strategic policy more effectively. We then translate the learned policy back into natural language dialogues, which are used to fine-tune an LLM via Direct Preference Optimization (DPO). By iteratively alternating between these stages, our LSPO agent progressively enhances both strategic reasoning and language communication. Experiment results on the Werewolf game show that our method improves the agent's performance in each iteration and outperforms existing Werewolf agents, underscoring its promise for free-form language decision-making.

  • 5 authors
·
Feb 7, 2025

Plan-X: Instruct Video Generation via Semantic Planning

Diffusion Transformers have demonstrated remarkable capabilities in visual synthesis, yet they often struggle with high-level semantic reasoning and long-horizon planning. This limitation frequently leads to visual hallucinations and mis-alignments with user instructions, especially in scenarios involving complex scene understanding, human-object interactions, multi-stage actions, and in-context motion reasoning. To address these challenges, we propose Plan-X, a framework that explicitly enforces high-level semantic planning to instruct video generation process. At its core lies a Semantic Planner, a learnable multimodal language model that reasons over the user's intent from both text prompts and visual context, and autoregressively generates a sequence of text-grounded spatio-temporal semantic tokens. These semantic tokens, complementary to high-level text prompt guidance, serve as structured "semantic sketches" over time for the video diffusion model, which has its strength at synthesizing high-fidelity visual details. Plan-X effectively integrates the strength of language models in multimodal in-context reasoning and planning, together with the strength of diffusion models in photorealistic video synthesis. Extensive experiments demonstrate that our framework substantially reduces visual hallucinations and enables fine-grained, instruction-aligned video generation consistent with multimodal context.

  • 10 authors
·
Nov 22, 2025 2

Enhancing Visual Planning with Auxiliary Tasks and Multi-token Prediction

Visual Planning for Assistance (VPA) aims to predict a sequence of user actions required to achieve a specified goal based on a video showing the user's progress. Although recent advances in multimodal large language models (MLLMs) have shown promising results in video understanding, long-horizon visual planning remains a challenging problem. We identify two challenges in training large MLLMs for video-based planning tasks: (1) scarcity of procedural annotations, limiting the model's ability to learn procedural task dynamics effectively, and (2) inefficiency of next-token prediction objective to explicitly capture the structured action space for visual planning when compared to free-form, natural language. To tackle data scarcity, we introduce Auxiliary Task Augmentation. We design and train our model on auxiliary tasks relevant to long-horizon video-based planning (e.g., goal prediction) to augment the model's planning ability. To more explicitly model the structured action space unique to visual planning tasks, we leverage Multi-token Prediction, extending traditional next-token prediction by using multiple heads to predict multiple future tokens during training. Our approach, VideoPlan, achieves state-of-the-art VPA performance on the COIN and CrossTask datasets, surpassing prior methods by 7.3% and 3.4%, respectively, when predicting 3 future actions. We further extend our method to the challenging Ego4D Long-term Action Anticipation task, and show that it is on par with the state-of-the-art approaches despite not using specialized egocentric features. Code will be made available.

  • 7 authors
·
Jul 20, 2025