- M2M-Gen: A Multimodal Framework for Automated Background Music Generation in Japanese Manga Using Large Language Models This paper introduces M2M Gen, a multi modal framework for generating background music tailored to Japanese manga. The key challenges in this task are the lack of an available dataset or a baseline. To address these challenges, we propose an automated music generation pipeline that produces background music for an input manga book. Initially, we use the dialogues in a manga to detect scene boundaries and perform emotion classification using the characters faces within a scene. Then, we use GPT4o to translate this low level scene information into a high level music directive. Conditioned on the scene information and the music directive, another instance of GPT 4o generates page level music captions to guide a text to music model. This produces music that is aligned with the mangas evolving narrative. The effectiveness of M2M Gen is confirmed through extensive subjective evaluations, showcasing its capability to generate higher quality, more relevant and consistent music that complements specific scenes when compared to our baselines. 4 authors · Oct 13, 2024 1
- Partitura: A Python Package for Symbolic Music Processing Partitura is a lightweight Python package for handling symbolic musical information. It provides easy access to features commonly used in music information retrieval tasks, like note arrays (lists of timed pitched events) and 2D piano roll matrices, as well as other score elements such as time and key signatures, performance directives, and repeat structures. Partitura can load musical scores (in MEI, MusicXML, Kern, and MIDI formats), MIDI performances, and score-to-performance alignments. The package includes some tools for music analysis, such as automatic pitch spelling, key signature identification, and voice separation. Partitura is an open-source project and is available at https://github.com/CPJKU/partitura/. 6 authors · Jun 2, 2022
- Beat-Aligned Spectrogram-to-Sequence Generation of Rhythm-Game Charts In the heart of "rhythm games" - games where players must perform actions in sync with a piece of music - are "charts", the directives to be given to players. We newly formulate chart generation as a sequence generation task and train a Transformer using a large dataset. We also introduce tempo-informed preprocessing and training procedures, some of which are suggested to be integral for a successful training. Our model is found to outperform the baselines on a large dataset, and is also found to benefit from pretraining and finetuning. 3 authors · Nov 22, 2023