Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning
Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset is available at https://github.com/yangzhch6/InterMWP.
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models
The optimal training configurations of large language models (LLMs) with respect to model sizes and compute budgets have been extensively studied. But how to optimally configure LLMs during inference has not been explored in sufficient depth. We study compute-optimal inference: designing models and inference strategies that optimally trade off additional inference-time compute for improved performance. As a first step towards understanding and designing compute-optimal inference methods, we assessed the effectiveness and computational efficiency of multiple inference strategies such as Greedy Search, Majority Voting, Best-of-N, Weighted Voting, and their variants on two different Tree Search algorithms, involving different model sizes and computational budgets. We found that a smaller language model with a novel tree search algorithm typically achieves a Pareto-optimal trade-off. These results highlight the potential benefits of deploying smaller models equipped with more sophisticated decoding algorithms in budget-constrained scenarios, e.g., on end-devices, to enhance problem-solving accuracy. For instance, we show that the Llemma-7B model can achieve competitive accuracy to a Llemma-34B model on MATH500 while using 2times less FLOPs. Our findings could potentially apply to any generation task with a well-defined measure of success.
MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose MetaLadder, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogous problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model's comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like "learning from examples" and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy, largely outperforming standard CoT-based methods (10.3\% accuracy gain) and other methods. Our code and data has been released at https://github.com/LHL3341/MetaLadder.
Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.
Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
Large Language Models Can Be Easily Distracted by Irrelevant Context
Large language models have achieved impressive performance on various natural language processing tasks. However, so far they have been evaluated primarily on benchmarks where all information in the input context is relevant for solving the task. In this work, we investigate the distractibility of large language models, i.e., how the model problem-solving accuracy can be influenced by irrelevant context. In particular, we introduce Grade-School Math with Irrelevant Context (GSM-IC), an arithmetic reasoning dataset with irrelevant information in the problem description. We use this benchmark to measure the distractibility of cutting-edge prompting techniques for large language models, and find that the model performance is dramatically decreased when irrelevant information is included. We also identify several approaches for mitigating this deficiency, such as decoding with self-consistency and adding to the prompt an instruction that tells the language model to ignore the irrelevant information.
Measuring Mathematical Problem Solving With the MATH Dataset
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral.
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
Metacognitive knowledge refers to humans' intuitive knowledge of their own thinking and reasoning processes. Today's best LLMs clearly possess some reasoning processes. The paper gives evidence that they also have metacognitive knowledge, including ability to name skills and procedures to apply given a task. We explore this primarily in context of math reasoning, developing a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions, followed by having it perform semantic clustering to obtain coarser families of skill labels. These coarse skill labels look interpretable to humans. To validate that these skill labels are meaningful and relevant to the LLM's reasoning processes we perform the following experiments. (a) We ask GPT-4 to assign skill labels to training questions in math datasets GSM8K and MATH. (b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed. Then it is presented with randomly selected exemplar solved questions associated with that skill label. This improves accuracy on GSM8k and MATH for several strong LLMs, including code-assisted models. The methodology presented is domain-agnostic, even though this article applies it to math problems.
Scalable and Equitable Math Problem Solving Strategy Prediction in Big Educational Data
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can be designed to improve strategies and frustration can be minimized by adapting to a student's natural way of thinking rather than trying to fit a standard strategy for all. While it may be possible for human experts to identify strategies manually in classroom settings with sufficient student interaction, it is not possible to scale this up to big data. Therefore, we leverage advances in Machine Learning and AI methods to perform scalable strategy prediction that is also fair to students at all skill levels. Specifically, we develop an embedding called MVec where we learn a representation based on the mastery of students. We then cluster these embeddings with a non-parametric clustering method where we progressively learn clusters such that we group together instances that have approximately symmetrical strategies. The strategy prediction model is trained on instances sampled from these clusters. This ensures that we train the model over diverse strategies and also that strategies from a particular group do not bias the DNN model, thus allowing it to optimize its parameters over all groups. Using real world large-scale student interaction datasets from MATHia, we implement our approach using transformers and Node2Vec for learning the mastery embeddings and LSTMs for predicting strategies. We show that our approach can scale up to achieve high accuracy by training on a small sample of a large dataset and also has predictive equality, i.e., it can predict strategies equally well for learners at diverse skill levels.
Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning
Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks. However, their limitations in navigating open-ended clinical scenarios have recently been shown, raising concerns about the robustness and generalizability of LLM reasoning across diverse, real-world medical tasks. To probe potential LLM failure modes in clinical problem-solving, we present the medical abstraction and reasoning corpus (M-ARC). M-ARC assesses clinical reasoning through scenarios designed to exploit the Einstellung effect -- the fixation of thought arising from prior experience, targeting LLM inductive biases toward inflexible pattern matching from their training data rather than engaging in flexible reasoning. We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC, often demonstrating lack of commonsense medical reasoning and a propensity to hallucinate. In addition, uncertainty estimation analyses indicate that LLMs exhibit overconfidence in their answers, despite their limited accuracy. The failure modes revealed by M-ARC in LLM medical reasoning underscore the need to exercise caution when deploying these models in clinical settings.
Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
Is PRM Necessary? Problem-Solving RL Implicitly Induces PRM Capability in LLMs
The development of reasoning capabilities represents a critical frontier in large language models (LLMs) research, where reinforcement learning (RL) and process reward models (PRMs) have emerged as predominant methodological frameworks. Contrary to conventional wisdom, empirical evidence from DeepSeek-R1 demonstrates that pure RL training focused on mathematical problem-solving can progressively enhance reasoning abilities without PRM integration, challenging the perceived necessity of process supervision. In this study, we conduct a systematic investigation of the relationship between RL training and PRM capabilities. Our findings demonstrate that problem-solving proficiency and process supervision capabilities represent complementary dimensions of reasoning that co-evolve synergistically during pure RL training. In particular, current PRMs underperform simple baselines like majority voting when applied to state-of-the-art models such as DeepSeek-R1 and QwQ-32B. To address this limitation, we propose Self-PRM, an introspective framework in which models autonomously evaluate and rerank their generated solutions through self-reward mechanisms. Although Self-PRM consistently improves the accuracy of the benchmark (particularly with larger sample sizes), analysis exposes persistent challenges: The approach exhibits low precision (<10\%) on difficult problems, frequently misclassifying flawed solutions as valid. These analyses underscore the need for continued RL scaling to improve reward alignment and introspective accuracy. Overall, our findings suggest that PRM may not be essential for enhancing complex reasoning, as pure RL not only improves problem-solving skills but also inherently fosters robust PRM capabilities. We hope these findings provide actionable insights for building more reliable and self-aware complex reasoning models.
OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities
In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.
MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, MathFusionQA, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
HDFlow: Enhancing LLM Complex Problem-Solving with Hybrid Thinking and Dynamic Workflows
Despite recent advancements in large language models (LLMs), their performance on complex reasoning problems requiring multi-step thinking and combining various skills is still limited. To address this, we propose a novel framework HDFlow for complex reasoning with LLMs that combines fast and slow thinking modes in an adaptive manner. Our approach consists of two key components: 1) a new approach for slow, deliberate reasoning called Dynamic Workflow, which automatically decomposes complex problems into more manageable sub-tasks and dynamically designs a workflow to assemble specialized LLM or symbolic reasoning tools to solve sub-tasks; 2) Hybrid Thinking, a general framework that dynamically combines fast and slow thinking based on problem complexity. Finally, we propose an easy-to-scale method for automatically synthesizing a large-scale dataset of 27K challenging reasoning problems for complex reasoning and a hybrid thinking tuning method that trains smaller LLMs on this dataset to internalize the fast/slow hybrid reasoning strategies. Experiments on four reasoning benchmark datasets demonstrate that our slow thinking with dynamic workflows significantly outperforms Chain-of-Thought, and hybrid thinking achieves the highest accuracy while providing an effective balance between computational efficiency and performance. Fine-tuning using our hybrid thinking approach also significantly boosts the complex reasoning capabilities of open-source language models. The results showcase the promise of slow thinking, dynamic workflows, and hybrid thinking in expanding the frontier of complex problem-solving with LLMsCode and data will be released at \url{https://github.com/wenlinyao/HDFlow.}.
Enhancing LLMs for Physics Problem-Solving using Reinforcement Learning with Human-AI Feedback
Large Language Models (LLMs) have demonstrated strong capabilities in text-based tasks but struggle with the complex reasoning required for physics problems, particularly in advanced arithmetic and conceptual understanding. While some research has explored ways to enhance LLMs in physics education using techniques such as prompt engineering and Retrieval Augmentation Generation (RAG), not enough effort has been made in addressing their limitations in physics reasoning. This paper presents a novel approach to improving LLM performance on physics questions using Reinforcement Learning with Human and Artificial Intelligence Feedback (RLHAIF). We evaluate several reinforcement learning methods, including Proximal Policy Optimization (PPO), Direct Preference Optimization (DPO), and Remax optimization. These methods are chosen to investigate RL policy performance with different settings on the PhyQA dataset, which includes challenging physics problems from high school textbooks. Our RLHAIF model, tested on leading LLMs like LLaMA2 and Mistral, achieved superior results, notably with the MISTRAL-PPO model, demonstrating marked improvements in reasoning and accuracy. It achieved high scores, with a 58.67 METEOR score and a 0.74 Reasoning score, making it a strong example for future physics reasoning research in this area.
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving
Large language models have made significant progress in various language tasks, yet they still struggle with complex mathematics. In this paper, we propose ToRA a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems by seamlessly integrating natural language reasoning with the utilization of external tools (e.g., computation libraries and symbolic solvers), thereby amalgamating the analytical prowess of language and the computational efficiency of tools. To train ToRA, we curate interactive tool-use trajectories on mathematical datasets, apply imitation learning on the annotations, and propose output space shaping to further refine models' reasoning behavior. As a result, ToRA models significantly outperform open-source models on 10 mathematical reasoning datasets across all scales with 13%-19% absolute improvements on average. Notably, ToRA-7B reaches 44.6% on the competition-level dataset MATH, surpassing the best open-source model WizardMath-70B by 22% absolute. ToRA-34B is also the first open-source model that achieves an accuracy exceeding 50% on MATH, which significantly outperforms GPT-4's CoT result, and is competitive with GPT-4 solving problems with programs. Additionally, we conduct a comprehensive analysis of the benefits and remaining challenges of tool interaction for mathematical reasoning, providing valuable insights for future research.
KnowledgeMath: Knowledge-Intensive Math Word Problem Solving in Finance Domains
We introduce KnowledgeMath, a novel benchmark designed to evaluate LLMs' capabilities in applying financial knowledge to solve complex math word problems. Compared to prior works, this study features three core advancements. First, KnowledgeMath includes 1,259 problems with a hybrid of textual and tabular content and require college-level knowledge in the finance domain for effective resolution. Second, we provide expert-annotated, detailed solution references in Python program format, ensuring a high-quality benchmark for LLM assessment. Finally, we evaluate a wide spectrum of 14 LLMs with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. The current best-performing system (i.e., GPT-4 with Program-of-Thoughts) achieves only 45.4% accuracy, leaving substantial room for improvement. While knowledge-augmented LLMs can improve the performance (e.g., from 23.9% to 32.0% for GPT-3.5), it is still significantly lower the estimated human expert performance of 94%. We believe that KnowledgeMath can facilitate future research on domain-specific knowledge retrieval and augmentation into the math word problem-solving process. We will release the benchmark and code at https://github.com/yale-nlp/KnowledgeMath.
Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions.
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
Creativity or Brute Force? Using Brainteasers as a Window into the Problem-Solving Abilities of Large Language Models
Accuracy remains a standard metric for evaluating AI systems, but it offers limited insight into how models arrive at their solutions. In this work, we introduce a benchmark based on brainteasers written in long narrative form to probe more deeply into the types of reasoning strategies that models use. Brainteasers are well-suited for this goal because they can be solved with multiple approaches, such as a few-step solution that uses a creative insight or a longer solution that uses more brute force. We investigate large language models (LLMs) across multiple layers of reasoning, focusing not only on correctness but also on the quality and creativity of their solutions. We investigate many aspects of the reasoning process: (1) semantic parsing of the brainteasers into precise mathematical competition style formats; (2) generating solutions from these mathematical forms; (3) self-correcting solutions based on gold solutions; (4) producing step-by-step sketches of solutions; and (5) making use of hints. We find that LLMs are in many cases able to find creative, insightful solutions to brainteasers, suggesting that they capture some of the capacities needed to solve novel problems in creative ways. Nonetheless, there also remain situations where they rely on brute force despite the availability of more efficient, creative solutions, highlighting a potential direction for improvement in the reasoning abilities of LLMs.
The Benefits of a Concise Chain of Thought on Problem-Solving in Large Language Models
In this paper, we introduce Concise Chain-of-Thought (CCoT) prompting. We compared standard CoT and CCoT prompts to see how conciseness impacts response length and correct-answer accuracy. We evaluated this using GPT-3.5 and GPT-4 with a multiple-choice question-and-answer (MCQA) benchmark. CCoT reduced average response length by 48.70% for both GPT-3.5 and GPT-4 while having a negligible impact on problem-solving performance. However, on math problems, GPT-3.5 with CCoT incurs a performance penalty of 27.69%. Overall, CCoT leads to an average per-token cost reduction of 22.67%. These results have practical implications for AI systems engineers using LLMs to solve real-world problems with CoT prompt-engineering techniques. In addition, these results provide more general insight for AI researchers studying the emergent behavior of step-by-step reasoning in LLMs.
Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV's superior performance and broad applicability. It achieves new state-of-the-art results on our held-out \thisbench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2\% to 73.3\% on AIME2025 as the compute budget scales.
PHYSICS: Benchmarking Foundation Models on University-Level Physics Problem Solving
We introduce PHYSICS, a comprehensive benchmark for university-level physics problem solving. It contains 1297 expert-annotated problems covering six core areas: classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, atomic physics, and optics. Each problem requires advanced physics knowledge and mathematical reasoning. We develop a robust automated evaluation system for precise and reliable validation. Our evaluation of leading foundation models reveals substantial limitations. Even the most advanced model, o3-mini, achieves only 59.9% accuracy, highlighting significant challenges in solving high-level scientific problems. Through comprehensive error analysis, exploration of diverse prompting strategies, and Retrieval-Augmented Generation (RAG)-based knowledge augmentation, we identify key areas for improvement, laying the foundation for future advancements.
Bridging Formal Language with Chain-of-Thought Reasoning to Geometry Problem Solving
Large vision language models exhibit notable limitations on Geometry Problem Solving (GPS) because of their unreliable diagram interpretation and pure natural-language reasoning. A recent line of work mitigates this by using symbolic solvers: the model directly generates a formal program that a geometry solver can execute. However, this direct program generation lacks intermediate reasoning, making the decision process opaque and prone to errors. In this work, we explore a new approach that integrates Chain-of-Thought (CoT) with formal language. The model interleaves natural language reasoning with incremental emission of solver-executable code, producing a hybrid reasoning trace in which critical derivations are expressed in formal language. To teach this behavior at scale, we combine (1) supervised fine-tuning on an 11K newly developed synthetic dataset with interleaved natural language reasoning and automatic formalization, and (2) solver-in-the-loop reinforcement learning that jointly optimizes both the CoT narrative and the resulting program through outcome-based rewards. Built on Qwen2.5-VL-7B, our new model, named GF-Reasoner, achieves up to 15% accuracy improvements on standard GPS benchmarks, surpassing both 7B-scale peers and the much larger model Qwen2.5-VL-72B. By exploiting high-order geometric knowledge and offloading symbolic computation to the solver, the generated reasoning traces are noticeably shorter and cleaner. Furthermore, we present a comprehensive analysis of method design choices (e.g., reasoning paradigms, data synthesis, training epochs, etc.), providing actionable insights for future research.
AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
With the rise of artificial intelligence (AI), applying large language models (LLMs) to Operations Research (OR) problem-solving has attracted increasing attention. Most existing approaches attempt to improve OR problem-solving through prompt engineering or fine-tuning strategies for LLMs. However, these methods are fundamentally constrained by the limited capabilities of non-reasoning LLMs. To overcome these limitations, we propose OR-LLM-Agent, an AI agent built on reasoning LLMs for automated OR problem solving. The agent decomposes the task into three sequential stages: mathematical modeling, code generation, and debugging. Each task is handled by a dedicated sub-agent, which enables more targeted reasoning. We also construct BWOR, a high-quality dataset for evaluating LLM performance on OR tasks. Our analysis shows that existing benchmarks such as NL4OPT, MAMO, and IndustryOR suffer from certain issues, making them less suitable for reliably evaluating LLM performance. In contrast, BWOR provides a more consistent and discriminative assessment of model capabilities. Experimental results demonstrate that OR-LLM-Agent outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, and ORLM, by at least 7% in accuracy. These results demonstrate the effectiveness of task decomposition for OR problem solving.
MSARL: Decoupling Reasoning and Tool Use with Multi-Small-Agent Reinforcement Learning
Recent advances in multi-agent systems highlight the potential of specialized small agents that collaborate via division of labor. Existing tool-integrated reasoning systems, however, often follow a single-agent paradigm in which one large model interleaves long-horizon reasoning with precise tool operations, leading to cognitive-load interference and unstable coordination. We present MSARL, a Multi-Small-Agent Reinforcement Learning framework that explicitly decouples reasoning from tool use. In MSARL, a Reasoning Agent decomposes problems and plans tool invocations, while multiple Tool Agents specialize in specific external tools, each trained via a combination of imitation learning and reinforcement learning with role-specific rewards. On mathematical problem solving with code execution, MSARL significantly improves reasoning stability and final-answer accuracy over single-agent baselines. Moreover, the architecture generalizes to diverse tool-use tasks, demonstrating that cognitive-role decoupling with small agents is a scalable blueprint for multi-agent AI design.
Measuring Massive Multitask Language Understanding
We propose a new test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. We find that while most recent models have near random-chance accuracy, the very largest GPT-3 model improves over random chance by almost 20 percentage points on average. However, on every one of the 57 tasks, the best models still need substantial improvements before they can reach expert-level accuracy. Models also have lopsided performance and frequently do not know when they are wrong. Worse, they still have near-random accuracy on some socially important subjects such as morality and law. By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.
MASTER: A Multi-Agent System with LLM Specialized MCTS
Large Language Models (LLM) are increasingly being explored for problem-solving tasks. However, their strategic planning capability is often viewed with skepticism. Recent studies have incorporated the Monte Carlo Tree Search (MCTS) algorithm to augment the planning capacity of LLM. Despite its potential, MCTS relies on extensive sampling simulations to approximate the true reward distribution, which leads to two primary issues. Firstly, MCTS is effective for tasks like the Game of Go, where simulation results can yield objective rewards (e.g., 1 for a win and 0 for a loss). However, for tasks such as question answering, the result of a simulation is the answer to the question, which cannot yield an objective reward without the ground truth. Secondly, obtaining statistically significant reward estimations typically requires a sample size exceeding 30 simulations, resulting in excessive token usage and time consumption. To address these challenges, we present the Multi-Agent System with Tactical Execution and Reasoning using LLM Specialized MCTS (MASTER), a novel framework that coordinates agent recruitment and communication through LLM specialized MCTS. This system autonomously adjusts the number of agents based on task complexity and ensures focused communication among them. Comprehensive experiments across various tasks demonstrate the effectiveness of our proposed framework. It achieves 76% accuracy on HotpotQA and 80% on WebShop, setting new state-of-the-art performance on these datasets.
GeoSketch: A Neural-Symbolic Approach to Geometric Multimodal Reasoning with Auxiliary Line Construction and Affine Transformation
Geometric Problem Solving (GPS) poses a unique challenge for Multimodal Large Language Models (MLLMs), requiring not only the joint interpretation of text and diagrams but also iterative visuospatial reasoning. While existing approaches process diagrams as static images, they lack the capacity for dynamic manipulation - a core aspect of human geometric reasoning involving auxiliary line construction and affine transformations. We present GeoSketch, a neural-symbolic framework that recasts geometric reasoning as an interactive perception-reasoning-action loop. GeoSketch integrates: (1) a Perception module that abstracts diagrams into structured logic forms, (2) a Symbolic Reasoning module that applies geometric theorems to decide the next deductive step, and (3) a Sketch Action module that executes operations such as drawing auxiliary lines or applying transformations, thereby updating the diagram in a closed loop. To train this agent, we develop a two-stage pipeline: supervised fine-tuning on 2,000 symbolic-curated trajectories followed by reinforcement learning with dense, symbolic rewards to enhance robustness and strategic exploration. To evaluate this paradigm, we introduce the GeoSketch Benchmark, a high-quality set of 390 geometry problems requiring auxiliary construction or affine transformations. Experiments on strong MLLM baselines demonstrate that GeoSketch significantly improves stepwise reasoning accuracy and problem-solving success over static perception methods. By unifying hierarchical decision-making, executable visual actions, and symbolic verification, GeoSketch advances multimodal reasoning from static interpretation to dynamic, verifiable interaction, establishing a new foundation for solving complex visuospatial problems.
Faithful Chain-of-Thought Reasoning
While Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a faithful-by-construction framework that decomposes a reasoning task into two stages: Translation (Natural Language query rightarrow symbolic reasoning chain) and Problem Solving (reasoning chain rightarrow answer), using an LM and a deterministic solver respectively. We demonstrate the efficacy of our approach on 10 reasoning datasets from 4 diverse domains. It outperforms traditional CoT prompting on 9 out of the 10 datasets, with an average accuracy gain of 4.4 on Math Word Problems, 1.9 on Planning, 4.0 on Multi-hop Question Answering (QA), and 18.1 on Logical Inference, under greedy decoding. Together with self-consistency decoding, we achieve new state-of-the-art few-shot performance on 7 out of the 10 datasets, showing a strong synergy between faithfulness and accuracy.
Cumulative Reasoning with Large Language Models
While language models are powerful and versatile, they often fail to address highly complex problems. This is because solving complex problems requires deliberate thinking, which has been only minimally guided during training. In this paper, we propose a new method called Cumulative Reasoning (CR), which employs language models in a cumulative and iterative manner to emulate human thought processes. By decomposing tasks into smaller components, CR streamlines the problem-solving process, rendering it both more manageable and effective. For logical inference tasks, CR consistently outperforms existing methods with an improvement up to 9.3%, and achieves the astonishing accuracy of 98.04% on the curated FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy of 98%, which signifies a substantial enhancement of 24% over the previous state-of-the-art method. Finally, on the MATH dataset, we establish new state-of-the-art results with 58.0% overall accuracy, surpassing the previous best approach by a margin of 4.2%, and achieving 43% relative improvement on the hardest level 5 problems (22.4% to 32.1%). Code is available at https://github.com/iiis-ai/cumulative-reasoning.
Sirius: Contextual Sparsity with Correction for Efficient LLMs
With the blossom of large language models (LLMs), inference efficiency becomes increasingly important. Various approximation methods are proposed to reduce the cost at inference time. Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without quality degradation. However, after a comprehensive evaluation of contextual sparsity methods on various complex generation tasks, we find that although CS succeeds in prompt-understanding tasks, CS significantly degrades the model performance for reasoning, deduction, and knowledge-based tasks. Despite the gap in end-to-end accuracy, we observed that sparse models often share general problem-solving logic and require only a few token corrections to recover the original model performance. This paper introduces Sirius, an efficient correction mechanism, which significantly recovers CS models quality on reasoning tasks while maintaining its efficiency gain. Sirius is evaluated on 6 models with 8 difficult generation tasks in reasoning, math, and coding and shows consistent effectiveness and efficiency. Also, we carefully develop a system implementation for Sirius and show that Sirius achieves roughly 20% reduction in latency for 8B model on-chip and 35% reduction for 70B model offloading. We open-source our implementation of Sirius at https://github.com/Infini-AI-Lab/Sirius.git.
Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning
To break the context limits of large language models (LLMs) that bottleneck reasoning accuracy and efficiency, we propose the Thread Inference Model (TIM), a family of LLMs trained for recursive and decompositional problem solving, and TIMRUN, an inference runtime enabling long-horizon structured reasoning beyond context limits. Together, TIM hosted on TIMRUN supports virtually unlimited working memory and multi-hop tool calls within a single language model inference, overcoming output limits, positional-embedding constraints, and GPU-memory bottlenecks. Performance is achieved by modeling natural language as reasoning trees measured by both length and depth instead of linear sequences. The reasoning trees consist of tasks with thoughts, recursive subtasks, and conclusions based on the concept we proposed in Schroeder et al, 2025. During generation, we maintain a working memory that retains only the key-value states of the most relevant context tokens, selected by a rule-based subtask-pruning mechanism, enabling reuse of positional embeddings and GPU memory pages throughout reasoning. Experimental results show that our system sustains high inference throughput, even when manipulating up to 90% of the KV cache in GPU memory. It also delivers accurate reasoning on mathematical tasks and handles information retrieval challenges that require long-horizon reasoning and multi-hop tool use.
When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm
With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.
Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on 10 reasoning benchmarks (e.g., GSM8K, MATH-500, AMC, GPQA, AIME and LiveCodeBench) show that the proposed method is consistently effective on 11 cutting-edge reasoning LLMs of varying series and sizes, reducing the length of CoT sequences by an average of 19.1% to 80.1% while improving accuracy by 0.3% to 5.0%.
RefTool: Enhancing Model Reasoning with Reference-Guided Tool Creation
Tools enhance the reasoning capabilities of large language models (LLMs) in complex problem-solving tasks, but not all tasks have available tools. In the absence of predefined tools, prior works have explored instructing LLMs to generate tools on their own. However, such approaches rely heavily on the models' internal knowledge and would fail in domains beyond the LLMs' knowledge scope. To address this limitation, we propose RefTool, a reference-guided framework for automatic tool creation that leverages structured external materials such as textbooks. RefTool consists of two modules: (1) tool creation, where LLMs generate executable tools from reference content, validate them using illustrative examples, and organize them hierarchically into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure to select and apply the appropriate tools to solve problems. Experiments on causality, physics, and chemistry benchmarks demonstrate that RefTool outperforms existing tool-creation and domain-specific reasoning methods by 11.3% on average accuracy, while being cost-efficient and broadly generalizable. Analyses reveal that grounding tool creation in references produces accurate and faithful tools, and that the hierarchical structure facilitates effective tool selection. RefTool enables LLMs to overcome knowledge limitations, demonstrating the value of grounding tool creation in external references for enhanced and generalizable reasoning.
LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations
In this paper, we present an innovative process-oriented math process reward model called Math-Shepherd, which assigns a reward score to each step of math problem solutions. The training of Math-Shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-Shepherd in two scenarios: 1) Verification: Math-Shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) Reinforcement Learning: Math-Shepherd is employed to reinforce LLMs with step-by-step Proximal Policy Optimization (PPO). With Math-Shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, the step-by-step PPO with Math-Shepherd significantly improves the accuracy of Mistral-7B (77.9\%to84.1\% on GSM8K and 28.6\%to33.0\% on MATH). The accuracy can be further enhanced to 89.1\% and 43.5\% on GSM8K and MATH with the verification of Math-Shepherd, respectively. We believe that automatic process supervision holds significant potential for the future evolution of LLMs.
Premise Order Matters in Reasoning with Large Language Models
Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.
Hide and Seek with LLMs: An Adversarial Game for Sneaky Error Generation and Self-Improving Diagnosis
Large Language Models (LLMs) excel in reasoning and generation across domains, but still struggle with identifying and diagnosing complex errors. This stems mainly from training objectives that prioritize correct answers, limiting exposure to and learning from errors. While recent studies have begun to address this by introducing error signals, most rely on shallow, static errors, restricting improvement in deep diagnostic ability. To overcome this, we propose Hide and Seek Game (HSG), a dynamic adversarial framework for error generation and diagnosis, and evaluate it on mathematical problem-solving. HSG involves two adversarial roles: Sneaky, which "hides" by generating subtle, deceptive reasoning errors, and Diagnosis, which "seeks" to accurately detect them. Through adversarial co-evolution, both error stealth and diagnostic precision are enhanced. Experiments on several math reasoning tasks show that HSG significantly boosts error diagnosis, achieving 16.8\%--31.4\% higher accuracy than baselines like GPT-4o. We also release a challenging dataset of deceptive errors and diagnostic annotations as a benchmark for future research.
Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs
Current multimodal large language models (MLLMs) often underperform on mathematical problem-solving tasks that require fine-grained visual understanding. The limitation is largely attributable to inadequate perception of geometric primitives during image-level contrastive pre-training (e.g., CLIP). While recent efforts to improve math MLLMs have focused on scaling up mathematical visual instruction datasets and employing stronger LLM backbones, they often overlook persistent errors in visual recognition. In this paper, we systematically evaluate the visual grounding capabilities of state-of-the-art MLLMs and reveal a significant negative correlation between visual grounding accuracy and problem-solving performance, underscoring the critical role of fine-grained visual understanding. Notably, advanced models like GPT-4o exhibit a 70% error rate when identifying geometric entities, highlighting that this remains a key bottleneck in visual mathematical reasoning. To address this, we propose a novel approach, SVE-Math (Selective Vision-Enhanced Mathematical MLLM), featuring a geometric-grounded vision encoder and a feature router that dynamically adjusts the contribution of hierarchical visual feature maps. Our model recognizes accurate visual primitives and generates precise visual prompts tailored to the language model's reasoning needs. In experiments, SVE-Math-Qwen2.5-7B outperforms other 7B models by 15% on MathVerse and is compatible with GPT-4V on MathVista. Despite being trained on smaller datasets, SVE-Math-7B achieves competitive performance on GeoQA, rivaling models trained on significantly larger datasets. Our findings emphasize the importance of incorporating fine-grained visual understanding into MLLMs and provide a promising direction for future research.
Metacognitive Reuse: Turning Recurring LLM Reasoning Into Concise Behaviors
Large language models (LLMs) now solve multi-step problems by emitting extended chains of thought. During the process, they often re-derive the same intermediate steps across problems, inflating token usage and latency. This saturation of the context window leaves less capacity for exploration. We study a simple mechanism that converts recurring reasoning fragments into concise, reusable "behaviors" (name + instruction) via the model's own metacognitive analysis of prior traces. These behaviors are stored in a "behavior handbook" which supplies them to the model in-context at inference or distills them into parameters via supervised fine-tuning. This approach achieves improved test-time reasoning across three different settings - 1) Behavior-conditioned inference: Providing the LLM relevant behaviors in-context during reasoning reduces number of reasoning tokens by up to 46% while matching or improving baseline accuracy; 2) Behavior-guided self-improvement: Without any parameter updates, the model improves its own future reasoning by leveraging behaviors from its own past problem solving attempts. This yields up to 10% higher accuracy than a naive critique-and-revise baseline; and 3) Behavior-conditioned SFT: SFT on behavior-conditioned reasoning traces is more effective at converting non-reasoning models into reasoning models as compared to vanilla SFT. Together, these results indicate that turning slow derivations into fast procedural hints enables LLMs to remember how to reason, not just what to conclude.
Language Models are Crossword Solvers
Crosswords are a form of word puzzle that require a solver to demonstrate a high degree of proficiency in natural language understanding, wordplay, reasoning, and world knowledge, along with adherence to character and length constraints. In this paper we tackle the challenge of solving crosswords with Large Language Models (LLMs). We demonstrate that the current generation of state-of-the art (SoTA) language models show significant competence at deciphering cryptic crossword clues, and outperform previously reported SoTA results by a factor of 2-3 in relevant benchmarks. We also develop a search algorithm that builds off this performance to tackle the problem of solving full crossword grids with LLMs for the very first time, achieving an accuracy of 93\% on New York Times crossword puzzles. Contrary to previous work in this area which concluded that LLMs lag human expert performance significantly, our research suggests this gap is a lot narrower.
Zero-shot OCR Accuracy of Low-Resourced Languages: A Comparative Analysis on Sinhala and Tamil
Solving the problem of Optical Character Recognition (OCR) on printed text for Latin and its derivative scripts can now be considered settled due to the volumes of research done on English and other High-Resourced Languages (HRL). However, for Low-Resourced Languages (LRL) that use unique scripts, it remains an open problem. This study presents a comparative analysis of the zero-shot performance of six distinct OCR engines on two LRLs: Sinhala and Tamil. The selected engines include both commercial and open-source systems, aiming to evaluate the strengths of each category. The Cloud Vision API, Surya, Document AI, and Tesseract were evaluated for both Sinhala and Tamil, while Subasa OCR and EasyOCR were examined for only one language due to their limitations. The performance of these systems was rigorously analysed using five measurement techniques to assess accuracy at both the character and word levels. According to the findings, Surya delivered the best performance for Sinhala across all metrics, with a WER of 2.61%. Conversely, Document AI excelled across all metrics for Tamil, highlighted by a very low CER of 0.78%. In addition to the above analysis, we also introduce a novel synthetic Tamil OCR benchmarking dataset.
Explaining Math Word Problem Solvers
Automated math word problem solvers based on neural networks have successfully managed to obtain 70-80\% accuracy in solving arithmetic word problems. However, it has been shown that these solvers may rely on superficial patterns to obtain their equations. In order to determine what information math word problem solvers use to generate solutions, we remove parts of the input and measure the model's performance on the perturbed dataset. Our results show that the model is not sensitive to the removal of many words from the input and can still manage to find a correct answer when given a nonsense question. This indicates that automatic solvers do not follow the semantic logic of math word problems, and may be overfitting to the presence of specific words.
Solving the Catastrophic Forgetting Problem in Generalized Category Discovery
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)
This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a very large yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2D facial landmark datasets. (b) We create a guided by 2D landmarks network which converts 2D landmark annotations to 3D and unifies all existing datasets, leading to the creation of LS3D-W, the largest and most challenging 3D facial landmark dataset to date ~230,000 images. (c) Following that, we train a neural network for 3D face alignment and evaluate it on the newly introduced LS3D-W. (d) We further look into the effect of all "traditional" factors affecting face alignment performance like large pose, initialization and resolution, and introduce a "new" one, namely the size of the network. (e) We show that both 2D and 3D face alignment networks achieve performance of remarkable accuracy which is probably close to saturating the datasets used. Training and testing code as well as the dataset can be downloaded from https://www.adrianbulat.com/face-alignment/
Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem
The development of generative language models that can create long and coherent textual outputs via autoregression has lead to a proliferation of uses and a corresponding sweep of analyses as researches work to determine the limitations of this new paradigm. Unlike humans, these 'Large Language Models' (LLMs) are highly sensitive to small changes in their inputs, leading to unwanted inconsistency in their behavior. One problematic inconsistency when LLMs are used to answer multiple-choice questions or analyze multiple inputs is order dependency: the output of an LLM can (and often does) change significantly when sub-sequences are swapped, despite both orderings being semantically identical. In this paper we present , a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences. We show that this method provably eliminates order dependency, and that it can be applied to any transformer-based LLM to enable text generation that is unaffected by re-orderings. Delving into the implications of our method, we show that, despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses, and usually significantly less in practice. Thus, can be used as a 'dropped-in' method on fully trained models. Finally, we discuss how our method's success suggests that other strong guarantees can be obtained on LLM performance via modifying the input representations.
A for-loop is all you need. For solving the inverse problem in the case of personalized tumor growth modeling
Solving the inverse problem is the key step in evaluating the capacity of a physical model to describe real phenomena. In medical image computing, it aligns with the classical theme of image-based model personalization. Traditionally, a solution to the problem is obtained by performing either sampling or variational inference based methods. Both approaches aim to identify a set of free physical model parameters that results in a simulation best matching an empirical observation. When applied to brain tumor modeling, one of the instances of image-based model personalization in medical image computing, the overarching drawback of the methods is the time complexity for finding such a set. In a clinical setting with limited time between imaging and diagnosis or even intervention, this time complexity may prove critical. As the history of quantitative science is the history of compression, we align in this paper with the historical tendency and propose a method compressing complex traditional strategies for solving an inverse problem into a simple database query task. We evaluated different ways of performing the database query task assessing the trade-off between accuracy and execution time. On the exemplary task of brain tumor growth modeling, we prove that the proposed method achieves one order speed-up compared to existing approaches for solving the inverse problem. The resulting compute time offers critical means for relying on more complex and, hence, realistic models, for integrating image preprocessing and inverse modeling even deeper, or for implementing the current model into a clinical workflow.
OR-Toolformer: Modeling and Solving Operations Research Problems with Tool Augmented Large Language Models
Large language models (LLMs) demonstrate strong mathematical reasoning, but reliance on closed-source APIs for OR tasks raises privacy concerns, and training open-source models from scratch incurs high compute costs. We introduce OR-Toolformer, which fine-tunes Llama-3.1-8B-Instruct with a semi-automatic data synthesis pipeline that generates diverse OR problem-answer pairs and augments the model with external solvers to produce API calls. On three of four standard benchmarks, OR-Toolformer achieves up to 80.1% execution accuracy, exceeding size-matched baselines by over 4.3%. In zero-shot evaluation on two unseen OR problem types, it attains 54% average accuracy, a 21 percentage-point improvement over the strongest baseline. These findings validate the efficacy of tool-augmented fine-tuning LLMs for accurate and generalizable OR problem modeling and solving.
mmJEE-Eval: A Bilingual Multimodal Benchmark for Evaluating Scientific Reasoning in Vision-Language Models
Contemporary vision-language models (VLMs) perform well on existing multimodal reasoning benchmarks (78-85\% accuracy on MMMU, MathVista). Yet, these results fail to sufficiently distinguish true scientific reasoning articulation capabilities from pattern-matching. To address this gap, we introduce mmJEE-Eval, a multimodal bilingual (English and Hindi) benchmark comprising 1,460 questions from India's JEE Advanced examination (2019-2025) spanning pre-college Physics, Chemistry, and Mathematics domains. Our evaluation of 17 state-of-the-art models reveals that while frontier VLMs (GPT-5, Gemini 2.5 Pro/Flash) achieve 77-84\% accuracy on held-out 2025 questions, open-source models plateau at 37-45\% despite scaling to 400B parameters, a significant difference not observed on existing benchmarks. While closed frontiers from Google and OpenAI show high problem-solving accuracies (up to 100\% pass@3 scores), they fully collapse when the reasoning load is increased meta-cognitively (GPT-5 fixes just 5.2\% errors). Systematic ablations show mmJEE-Eval's difficulty stems from complexity and reasoning depth rather than memorization. Effectively, our benchmark segregates superior training and reasoning methodologies where alternatives fail. We publicly release our code and data: https://mmjee-eval.github.io
Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning
Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, including mathematical reasoning. However, the current evaluation mostly focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing or contradictory conditions, known as ill-defined problems. To further study this problem, we develop a largescale benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems. Our preliminary experiments through PMC reveal two challenges about existing methods: (1) traditional methods exhibit a trade-off between solving accuracy and rejection capabilities, and (2) formal methods struggle with modeling complex problems. To address these challenges, We develop Variable-Constraint Search (VCSEARCH), a trainingfree framework that leverages formal language to detect ill-defined problems, where a variableconstraint pair search strategy is incorporated to improve the modeling capability of formal language. Extensive experiments demonstrate that VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different LLMs, thus achieving stronger robust mathematical reasoning ability.
Large Language Models and Mathematical Reasoning Failures
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning
Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback
Tool Learning with Foundation Models
Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. In general, we hope this paper could inspire future research in integrating tools with foundation models.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions
Pretrained language models have shown superior performance on many natural language processing tasks, yet they still struggle at multi-step formal reasoning tasks like grade school math problems. One key challenge of finetuning them to solve such math reasoning problems is that many existing datasets only contain one reference solution for each problem, despite the fact that there are often alternative solutions resembling different reasoning paths to the final answer. This way, the finetuned models are biased towards the limited reference solutions, which limits their generalization to unseen examples. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct solutions, which yield the correct answer upon execution, and partially-correct solutions, whose intermediate state matches an intermediate state of a known correct solution. We show that our use of self-sampled correct and partially-correct solutions can benefit learning and help guide the sampling process, leading to more efficient exploration of the solution space. Additionally, we explore various training objectives to support learning from multiple solutions per example and find they greatly affect the performance. Experiments on two math reasoning datasets show the effectiveness of our method compared to learning from a single reference solution with MLE, where we improve PASS@100 from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA. Such improvements are also consistent across different model sizes. Our code is available at https://github.com/microsoft/TraceCodegen.
SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
Recent advances in large language models (LLMs) have demonstrated notable progress on many mathematical benchmarks. However, most of these benchmarks only feature problems grounded in junior and senior high school subjects, contain only multiple-choice questions, and are confined to a limited scope of elementary arithmetic operations. To address these issues, this paper introduces an expansive benchmark suite SciBench that aims to systematically examine the reasoning capabilities required for complex scientific problem solving. SciBench contains two carefully curated datasets: an open set featuring a range of collegiate-level scientific problems drawn from mathematics, chemistry, and physics textbooks, and a closed set comprising problems from undergraduate-level exams in computer science and mathematics. Based on the two datasets, we conduct an in-depth benchmark study of two representative LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with an overall score of merely 35.80%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms others and some strategies that demonstrate improvements in certain problem-solving skills result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.
Evaluating Language Model Math Reasoning via Grounding in Educational Curricula
Our work presents a novel angle for evaluating language models' (LMs) mathematical abilities, by investigating whether they can discern skills and concepts enabled by math content. We contribute two datasets: one consisting of 385 fine-grained descriptions of K-12 math skills and concepts, or standards, from Achieve the Core (ATC), and another of 9.9K problems labeled with these standards (MathFish). Working with experienced teachers, we find that LMs struggle to tag and verify standards linked to problems, and instead predict labels that are close to ground truth, but differ in subtle ways. We also show that LMs often generate problems that do not fully align with standards described in prompts. Finally, we categorize problems in GSM8k using math standards, allowing us to better understand why some problems are more difficult to solve for models than others.
Solving and Generating NPR Sunday Puzzles with Large Language Models
We explore the ability of large language models to solve and generate puzzles from the NPR Sunday Puzzle game show using PUZZLEQA, a dataset comprising 15 years of on-air puzzles. We evaluate four large language models using PUZZLEQA, in both multiple choice and free response formats, and explore two prompt engineering techniques to improve free response performance: chain-of-thought reasoning and prompt summarization. We find that state-of-the-art large language models can solve many PUZZLEQA puzzles: the best model, GPT-3.5, achieves 50.2% loose accuracy. However, in our few-shot puzzle generation experiment, we find no evidence that models can generate puzzles: GPT-3.5 generates puzzles with answers that do not conform to the generated rules. Puzzle generation remains a challenging task for future work.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
Examining False Positives under Inference Scaling for Mathematical Reasoning
Recent advancements in language models have led to significant improvements in mathematical reasoning across various benchmarks. However, most of these benchmarks rely on automatic evaluation methods that only compare final answers using heuristics, without verifying the underlying reasoning steps. This limitation results in false positive solutions, where models may produce correct final answers but with flawed deduction paths. In this paper, we systematically examine the prevalence of false positive solutions in mathematical problem solving for language models. We analyze the characteristics and extent of this issue across different open-source models, datasets of varying difficulty levels, and decoding strategies. Specifically, we explore how false positives influence the inference time scaling behavior of language models. Our experimental results reveal that: (1) false positive solutions persist across different models, datasets, and decoding methods, (2) sampling-based inference time scaling methods do not alleviate the problem, and (3) the pass@N evaluation metric is more susceptible to false positives, suggesting a significantly lower scaling ceiling than what automatic evaluations indicate. Additionally, we analyze specific instances of false positives and discuss potential limitations in self-improvement techniques and synthetic data generation under such conditions. Our data and code are publicly available at https://github.com/Wloner0809/False-Positives-in-Math.
THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
Flaw or Artifact? Rethinking Prompt Sensitivity in Evaluating LLMs
Prompt sensitivity, referring to the phenomenon where paraphrasing (i.e., repeating something written or spoken using different words) leads to significant changes in large language model (LLM) performance, has been widely accepted as a core limitation of LLMs. In this work, we revisit this issue and ask: Is the widely reported high prompt sensitivity truly an inherent weakness of LLMs, or is it largely an artifact of evaluation processes? To answer this question, we systematically evaluate 7 LLMs (e.g., GPT and Gemini family) across 6 benchmarks, including both multiple-choice and open-ended tasks on 12 diverse prompt templates. We find that much of the prompt sensitivity stems from heuristic evaluation methods, including log-likelihood scoring and rigid answer matching, which often overlook semantically correct responses expressed through alternative phrasings, such as synonyms or paraphrases. When we adopt LLM-as-a-Judge evaluations, we observe a substantial reduction in performance variance and a consistently higher correlation in model rankings across prompts. Our findings suggest that modern LLMs are more robust to prompt templates than previously believed, and that prompt sensitivity may be more an artifact of evaluation than a flaw in the models.
MAC-Tuning: LLM Multi-Compositional Problem Reasoning with Enhanced Knowledge Boundary Awareness
The hallucination of non-existent facts by LLMs is an important problem given its widespread adoption across various applications. Previous research addresses this problem by analyzing the internal parameterized knowledge boundaries to estimate confidence. However, these studies focus on the single-problem setting and have not explored the more challenging multi-problem setting, which requires accurately answering multiple questions simultaneously. We introduce a novel method for the multi-problem setting, Multiple Answers and Confidence Stepwise Tuning (MAC-Tuning), that separates the learning of answer prediction and confidence estimation during fine-tuning on instruction data. Extensive experiments demonstrate that our method outperforms baselines by up to 25\% in average precision.
Not All LLM Reasoners Are Created Equal
We study the depth of grade-school math (GSM) problem-solving capabilities of LLMs. To this end, we evaluate their performance on pairs of existing math word problems together so that the answer to the second problem depends on correctly answering the first problem. Our findings reveal a significant reasoning gap in most LLMs, that is performance difference between solving the compositional pairs and solving each question independently. This gap is more pronounced in smaller, more cost-efficient, and math-specialized models. Moreover, instruction-tuning recipes and code generation have varying effects across LLM sizes, while finetuning on GSM can lead to task overfitting. Our analysis indicates that large reasoning gaps are not because of test-set leakage, but due to distraction from additional context and poor second-hop reasoning. Overall, LLMs exhibit systematic differences in their reasoning abilities, despite what their performance on standard benchmarks indicates.
True Detective: A Deep Abductive Reasoning Benchmark Undoable for GPT-3 and Challenging for GPT-4
Large language models (LLMs) have demonstrated solid zero-shot reasoning capabilities, which is reflected in their performance on the current test tasks. This calls for a more challenging benchmark requiring highly advanced reasoning ability to be solved. In this paper, we introduce such a benchmark, consisting of 191 long-form (1200 words on average) mystery narratives constructed as detective puzzles. Puzzles are sourced from the "5 Minute Mystery" platform and include a multiple-choice question for evaluation. Only 47% of humans solve a puzzle successfully on average, while the best human solvers achieve over 80% success rate. We show that GPT-3 models barely outperform random on this benchmark (with 28% accuracy) while state-of-the-art GPT-4 solves only 38% of puzzles. This indicates that there is still a significant gap in the deep reasoning abilities of LLMs and humans and highlights the need for further research in this area. Our work introduces a challenging benchmark for future studies on reasoning in language models and contributes to a better understanding of the limits of LLMs' abilities.
MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations
Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.
Reasoning Over Paragraph Effects in Situations
A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
MultiZebraLogic: A Multilingual Logical Reasoning Benchmark
Measuring the full abilities of large language models (LLMs) requires benchmarks representing multiple tasks. We aim to create large, high-quality datasets for comparison of logical reasoning skills across several languages and of suitable difficulty for LLMs of various reasoning ability. We explore multiple ways of increasing difficulty. We generate zebra puzzles in multiple languages, themes, sizes and including 14 different clue types and 8 red herring types (uninformative clues). We find puzzle sizes 2x3 and 4x5 are sufficiently challenging for GPT-4o mini (a non-reasoning model) and o3-mini (a reasoning model), respectively. Including 5 red herrings decreases o3-mini puzzle-level accuracy on 4x5 puzzles by 15pm7 %. Scores of o3-mini on 4x5 puzzles are not significantly affected by use of English vs. Danish or the common houses theme vs. the country-specific smoerrebroed theme. We find no correlation between difficulty and the selected clue types. Datasets of 128+1024 puzzles are published as MultiZebraLogic in each of nine Germanic languages for sizes 2x3 and 4x5. We publish code for puzzle generation, designed for adaptablity into more languages and themes.
UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.
Chain of Thoughtlessness: An Analysis of CoT in Planning
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated by modifying prompts to include examples with chains of thought--demonstrations of solution procedures--with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examine the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations and depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially because of the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.
Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models
While recent success of large reasoning models (LRMs) significantly advanced LLMs' reasoning capability by optimizing the final answer accuracy using reinforcement learning, they may also drastically increase the output length due to overthinking, characterized by unnecessarily complex reasoning paths that waste computation and potentially degrade the performance. We hypothesize that such inefficiencies stem from LRMs' limited capability to dynamically select the proper modular reasoning strategies, termed thinking patterns at the right position. To investigate this hypothesis, we propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns, systematically identifying and promoting beneficial patterns that improve the answer while removing detrimental ones. Empirical analysis confirms that our optimized thinking paths yield more concise yet sufficiently informative trajectories, enhancing reasoning efficiency by reducing attention FLOPs by up to 47% while maintaining accuracy for originally correct responses. Moreover, a non-trivial portion of originally incorrect responses are transformed into correct ones, achieving a 15.6% accuracy improvement with reduced length. Motivated by the improvement brought by the optimized thinking paths, we apply a preference optimization technique supported by a pairwise dataset contrasting suboptimal and optimal reasoning paths. Experimental evaluations across multiple mathematical reasoning benchmarks reveal that our method notably reduces computational overhead while simultaneously improving reasoning accuracy, achieving up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Diverse Inference and Verification for Advanced Reasoning
Reasoning LLMs such as OpenAI o1, o3 and DeepSeek R1 have made significant progress in mathematics and coding, yet find challenging advanced tasks such as International Mathematical Olympiad (IMO) combinatorics problems, Abstraction and Reasoning Corpus (ARC) puzzles, and Humanity's Last Exam (HLE) questions. We use a diverse inference approach that combines multiple models and methods at test time. We find that verifying mathematics and code problems, and rejection sampling on other problems is simple and effective. We automatically verify correctness of solutions to IMO problems by Lean, and ARC puzzles by code, and find that best-of-N effectively answers HLE questions. Our approach increases answer accuracy on IMO combinatorics problems from 33.3% to 77.8%, accuracy on HLE questions from 8% to 37%, and solves 80% of ARC puzzles that 948 humans could not and 26.5% of ARC puzzles that o3 high compute does not. Test-time simulations, reinforcement learning, and meta-learning with inference feedback improve generalization by adapting agent graph representations and varying prompts, code, and datasets. Our approach is reliable, robust, and scalable, and in the spirit of reproducible research, we will make it publicly available upon publication.
TheoremQA: A Theorem-driven Question Answering dataset
The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90\% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. \dataset is curated by domain experts containing 800 high-quality questions covering 350 theoremse.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc from Math, Physics, EE\&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51\% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15\%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of \dataset, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA.
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
Physics of Language Models: Part 2.2, How to Learn From Mistakes on Grade-School Math Problems
Language models have demonstrated remarkable performance in solving reasoning tasks; however, even the strongest models still occasionally make reasoning mistakes. Recently, there has been active research aimed at improving reasoning accuracy, particularly by using pretrained language models to "self-correct" their mistakes via multi-round prompting. In this paper, we follow this line of work but focus on understanding the usefulness of incorporating "error-correction" data directly into the pretraining stage. This data consists of erroneous solution steps immediately followed by their corrections. Using a synthetic math dataset, we show promising results: this type of pretrain data can help language models achieve higher reasoning accuracy directly (i.e., through simple auto-regression, without multi-round prompting) compared to pretraining on the same amount of error-free data. We also delve into many details, such as (1) how this approach differs from beam search, (2) how such data can be prepared, (3) whether masking is needed on the erroneous tokens, (4) the amount of error required, (5) whether such data can be deferred to the fine-tuning stage, and many others.
GPT-4 Doesn't Know It's Wrong: An Analysis of Iterative Prompting for Reasoning Problems
There has been considerable divergence of opinion on the reasoning abilities of Large Language Models (LLMs). While the initial optimism that reasoning might emerge automatically with scale has been tempered thanks to a slew of counterexamples, a wide spread belief in their iterative self-critique capabilities persists. In this paper, we set out to systematically investigate the effectiveness of iterative prompting of LLMs in the context of Graph Coloring, a canonical NP-complete reasoning problem that is related to propositional satisfiability as well as practical problems like scheduling and allocation. We present a principled empirical study of the performance of GPT4 in solving graph coloring instances or verifying the correctness of candidate colorings. In iterative modes, we experiment with the model critiquing its own answers and an external correct reasoner verifying proposed solutions. In both cases, we analyze whether the content of the criticisms actually affects bottom line performance. The study seems to indicate that (i) LLMs are bad at solving graph coloring instances (ii) they are no better at verifying a solution--and thus are not effective in iterative modes with LLMs critiquing LLM-generated solutions (iii) the correctness and content of the criticisms--whether by LLMs or external solvers--seems largely irrelevant to the performance of iterative prompting. We show that the observed increase in effectiveness is largely due to the correct solution being fortuitously present in the top-k completions of the prompt (and being recognized as such by an external verifier). Our results thus call into question claims about the self-critiquing capabilities of state of the art LLMs.
Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments
In this paper we look at the ability of recent large language models (LLMs) at solving mathematical problems in combinatorics. We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads. To facilitate these comparisons we introduce the Combi-Puzzles dataset, which contains 125 problem variants based on 25 combinatorial reasoning problems. Each problem is presented in one of five distinct forms, created by systematically manipulating the problem statements through adversarial additions, numeric parameter changes, and linguistic obfuscation. Our variations preserve the mathematical core and are designed to measure the generalisability of LLM problem-solving abilities, while also increasing confidence that problems are submitted to LLMs in forms that have not been seen as training instances. We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans. We also found that modifications to problem statements significantly impact the LLM's performance, while human performance remains unaffected.
Programming Puzzles
We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program f, and the goal is to find an input which makes f return True. The puzzles are objective in that each one is specified entirely by the source code of its verifier f, so evaluating f is all that is needed to test a candidate solution. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems, to classic programming puzzles (e.g., Tower of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). We develop baseline enumerative program synthesis, GPT-3 and Codex solvers that are capable of solving puzzles -- even without access to any reference solutions -- by learning from their own past solutions. Codex performs best, solving up to 18% of 397 test problems with a single try and 80% of the problems with 1,000 tries per problem. In a small user study, we find a positive correlation between puzzle-solving performance and coding experience, and between the puzzle difficulty for humans and AI solvers. Therefore, further improvements on P3 could have a significant impact on many program synthesis areas.
Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models
The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.
Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter?
Solving grid puzzles involves a significant amount of logical reasoning. Hence, it is a good domain to evaluate the reasoning capability of a model which can then guide us to improve the reasoning ability of models. However, most existing works evaluate only the final predicted answer of a puzzle, without delving into an in-depth analysis of the LLMs' reasoning chains (such as where they falter) or providing any finer metrics to evaluate them. Since LLMs may rely on simple heuristics or artifacts to predict the final answer, it is crucial to evaluate the generated reasoning chain beyond overall correctness measures, for accurately evaluating the reasoning abilities of LLMs. To this end, we first develop GridPuzzle, an evaluation dataset comprising 274 grid-based puzzles with different complexities. Second, we propose a new error taxonomy derived from manual analysis of reasoning chains from LLMs including GPT-4, Claude-3, Gemini, Mistral, and Llama-2. Then, we develop an LLM-based framework for large-scale subjective evaluation (i.e., identifying errors) and an objective metric, PuzzleEval, to evaluate the correctness of reasoning chains. Evaluating reasoning chains from LLMs leads to several interesting findings. We further show that existing prompting methods used for enhancing models' reasoning abilities do not improve performance on GridPuzzle. This highlights the importance of understanding fine-grained errors and presents a challenge for future research to enhance LLMs' puzzle-solving abilities by developing methods that address these errors. Data and source code are available at https://github.com/Mihir3009/GridPuzzle.
Cog-Rethinker: Hierarchical Metacognitive Reinforcement Learning for LLM Reasoning
Contemporary progress in large language models (LLMs) has revealed notable inferential capacities via reinforcement learning (RL) employing verifiable reward, facilitating the development of O1 and R1-like reasoning models. Directly training from base models with RL is called zero-RL. However, previous works rely upon activating LLMs' inherent capacities through fixed prompt templates. This strategy introduces substantial sampling inefficiencies for weak LLMs, as the majority of problems generate invalid outputs during accuracy-driven filtration in reasoning tasks, which causes a waste of samples. To solve this issue, we propose Cog-Rethinker, a novel hierarchical metacognitive RL framework for LLM reasoning. Our Cog-Rethinker mainly focuses on the rollout procedure in RL training. After the direct rollout, our Cog-Rethinker improves sample utilization in a hierarchical metacognitive two-stage framework. By leveraging human cognition during solving problems, firstly, it prompts policy to decompose zero-accuracy problems into subproblems to produce final reasoning results. Secondly, with zero-accuracy problems in previous rollout stage, it further prompts policy to refine these answers by referencing previous wrong solutions. Moreover, to enable cold-start of the two new reasoning patterns and maintain train-test consistency across prompt templates, our Cog-Rethinker applies supervised fine-tuning on the policy using correct samples of the two stages with direct rollout template. Experimental results demonstrate Cog-Rethinker's superior performance on various mathematical reasoning benchmarks, we also analyzed its improved sample efficiency that accelerates convergence compared to baseline methods.
FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
Exploring the Abilities of Large Language Models to Solve Proportional Analogies via Knowledge-Enhanced Prompting
Making analogies is fundamental to cognition. Proportional analogies, which consist of four terms, are often used to assess linguistic and cognitive abilities. For instance, completing analogies like "Oxygen is to Gas as <blank> is to <blank>" requires identifying the semantic relationship (e.g., "type of") between the first pair of terms ("Oxygen" and "Gas") and finding a second pair that shares the same relationship (e.g., "Aluminum" and "Metal"). In this work, we introduce a 15K Multiple-Choice Question Answering (MCQA) dataset for proportional analogy completion and evaluate the performance of contemporary Large Language Models (LLMs) in various knowledge-enhanced prompt settings. Specifically, we augment prompts with three types of knowledge: exemplar, structured, and targeted. Our results show that despite extensive training data, solving proportional analogies remains challenging for current LLMs, with the best model achieving an accuracy of 55%. Notably, we find that providing targeted knowledge can better assist models in completing proportional analogies compared to providing exemplars or collections of structured knowledge.
Don't Think Twice! Over-Reasoning Impairs Confidence Calibration
Large Language Models deployed as question answering tools require robust calibration to avoid overconfidence. We systematically evaluate how reasoning capabilities and budget affect confidence assessment accuracy, using the ClimateX dataset (Lacombe et al., 2023) and expanding it to human and planetary health. Our key finding challenges the "test-time scaling" paradigm: while recent reasoning LLMs achieve 48.7% accuracy in assessing expert confidence, increasing reasoning budgets consistently impairs rather than improves calibration. Extended reasoning leads to systematic overconfidence that worsens with longer thinking budgets, producing diminishing and negative returns beyond modest computational investments. Conversely, search-augmented generation dramatically outperforms pure reasoning, achieving 89.3% accuracy by retrieving relevant evidence. Our results suggest that information access, rather than reasoning depth or inference budget, may be the critical bottleneck for improved confidence calibration of knowledge-intensive tasks.
The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
REBUS: A Robust Evaluation Benchmark of Understanding Symbols
We propose a new benchmark evaluating the performance of multimodal large language models on rebus puzzles. The dataset covers 333 original examples of image-based wordplay, cluing 13 categories such as movies, composers, major cities, and food. To achieve good performance on the benchmark of identifying the clued word or phrase, models must combine image recognition and string manipulation with hypothesis testing, multi-step reasoning, and an understanding of human cognition, making for a complex, multimodal evaluation of capabilities. We find that proprietary models such as GPT-4V and Gemini Pro significantly outperform all other tested models. However, even the best model has a final accuracy of just 24%, highlighting the need for substantial improvements in reasoning. Further, models rarely understand all parts of a puzzle, and are almost always incapable of retroactively explaining the correct answer. Our benchmark can therefore be used to identify major shortcomings in the knowledge and reasoning of multimodal large language models.
Telecom Language Models: Must They Be Large?
The increasing interest in Large Language Models (LLMs) within the telecommunications sector underscores their potential to revolutionize operational efficiency. However, the deployment of these sophisticated models is often hampered by their substantial size and computational demands, raising concerns about their viability in resource-constrained environments. Addressing this challenge, recent advancements have seen the emergence of small language models that surprisingly exhibit performance comparable to their larger counterparts in many tasks, such as coding and common-sense reasoning. Phi-2, a compact yet powerful model, exemplifies this new wave of efficient small language models. This paper conducts a comprehensive evaluation of Phi-2's intrinsic understanding of the telecommunications domain. Recognizing the scale-related limitations, we enhance Phi-2's capabilities through a Retrieval-Augmented Generation approach, meticulously integrating an extensive knowledge base specifically curated with telecom standard specifications. The enhanced Phi-2 model demonstrates a profound improvement in accuracy, answering questions about telecom standards with a precision that closely rivals the more resource-intensive GPT-3.5. The paper further explores the refined capabilities of Phi-2 in addressing problem-solving scenarios within the telecom sector, highlighting its potential and limitations.
Improving Large Language Model Fine-tuning for Solving Math Problems
Despite their success in many natural language tasks, solving math problems remains a significant challenge for large language models (LLMs). A large gap exists between LLMs' pass-at-one and pass-at-N performance in solving math problems, suggesting LLMs might be close to finding correct solutions, motivating our exploration of fine-tuning methods to unlock LLMs' performance. Using the challenging MATH dataset, we investigate three fine-tuning strategies: (1) solution fine-tuning, where we fine-tune to generate a detailed solution for a given math problem; (2) solution-cluster re-ranking, where the LLM is fine-tuned as a solution verifier/evaluator to choose among generated candidate solution clusters; (3) multi-task sequential fine-tuning, which integrates both solution generation and evaluation tasks together efficiently to enhance the LLM performance. With these methods, we present a thorough empirical study on a series of PaLM 2 models and find: (1) The quality and style of the step-by-step solutions used for fine-tuning can make a significant impact on the model performance; (2) While solution re-ranking and majority voting are both effective for improving the model performance when used separately, they can also be used together for an even greater performance boost; (3) Multi-task fine-tuning that sequentially separates the solution generation and evaluation tasks can offer improved performance compared with the solution fine-tuning baseline. Guided by these insights, we design a fine-tuning recipe that yields approximately 58.8% accuracy on the MATH dataset with fine-tuned PaLM 2-L models, an 11.2% accuracy improvement over the few-shot performance of pre-trained PaLM 2-L model with majority voting.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.
HEAD-QA: A Healthcare Dataset for Complex Reasoning
We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.
Thought of Search: Planning with Language Models Through The Lens of Efficiency
Among the most important properties of algorithms investigated in computer science are soundness, completeness, and complexity. These properties, however, are rarely analyzed for the vast collection of recently proposed methods for planning with large language models. In this work, we alleviate this gap. We analyse these properties of using LLMs for planning and highlight that recent trends abandon both soundness and completeness for the sake of inefficiency. We propose a significantly more efficient approach that can, at the same time, maintain both soundness and completeness. We exemplify on four representative search problems, comparing to the LLM-based solutions from the literature that attempt to solve these problems. We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100\% accuracy with only a few calls to the LLM. We argue for a responsible use of compute resources; urging research community to investigate sound and complete LLM-based approaches that uphold efficiency.
An In-depth Look at Gemini's Language Abilities
The recently released Google Gemini class of models are the first to comprehensively report results that rival the OpenAI GPT series across a wide variety of tasks. In this paper, we do an in-depth exploration of Gemini's language abilities, making two contributions. First, we provide a third-party, objective comparison of the abilities of the OpenAI GPT and Google Gemini models with reproducible code and fully transparent results. Second, we take a closer look at the results, identifying areas where one of the two model classes excels. We perform this analysis over 10 datasets testing a variety of language abilities, including reasoning, answering knowledge-based questions, solving math problems, translating between languages, generating code, and acting as instruction-following agents. From this analysis, we find that Gemini Pro achieves accuracy that is close but slightly inferior to the corresponding GPT 3.5 Turbo on all tasks that we benchmarked. We further provide explanations for some of this under-performance, including failures in mathematical reasoning with many digits, sensitivity to multiple-choice answer ordering, aggressive content filtering, and others. We also identify areas where Gemini demonstrates comparably high performance, including generation into non-English languages, and handling longer and more complex reasoning chains. Code and data for reproduction can be found at https://github.com/neulab/gemini-benchmark
Scaling Reasoning can Improve Factuality in Large Language Models
Recent studies on large language model (LLM) reasoning capabilities have demonstrated promising improvements in model performance by leveraging a lengthy thinking process and additional computational resources during inference, primarily in tasks involving mathematical reasoning (Muennighoff et al., 2025). However, it remains uncertain if longer reasoning chains inherently enhance factual accuracy, particularly beyond mathematical contexts. In this work, we thoroughly examine LLM reasoning within complex open-domain question-answering (QA) scenarios. We initially distill reasoning traces from advanced, large-scale reasoning models (QwQ-32B and DeepSeek-R1-671B), then fine-tune a variety of models ranging from smaller, instruction-tuned variants to larger architectures based on Qwen2.5. To enrich reasoning traces, we introduce factual information from knowledge graphs in the form of paths into our reasoning traces. Our experimental setup includes four baseline approaches and six different instruction-tuned models evaluated across a benchmark of six datasets, encompassing over 22.6K questions. Overall, we carry out 168 experimental runs and analyze approximately 1.7 million reasoning traces. Our findings indicate that, within a single run, smaller reasoning models achieve noticeable improvements in factual accuracy compared to their original instruction-tuned counterparts. Moreover, our analysis demonstrates that adding test-time compute and token budgets factual accuracy consistently improves by 2-8%, further confirming the effectiveness of test-time scaling for enhancing performance and consequently improving reasoning accuracy in open-domain QA tasks. We release all the experimental artifacts for further research.
Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning
Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning? This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on \url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}.
Reasoning LLMs are Wandering Solution Explorers
Large Language Models (LLMs) have demonstrated impressive reasoning abilities through test-time computation (TTC) techniques such as chain-of-thought prompting and tree-based reasoning. However, we argue that current reasoning LLMs (RLLMs) lack the ability to systematically explore the solution space. This paper formalizes what constitutes systematic problem solving and identifies common failure modes that reveal reasoning LLMs to be wanderers rather than systematic explorers. Through qualitative and quantitative analysis across multiple state-of-the-art LLMs, we uncover persistent issues: invalid reasoning steps, redundant explorations, hallucinated or unfaithful conclusions, and so on. Our findings suggest that current models' performance can appear to be competent on simple tasks yet degrade sharply as complexity increases. Based on the findings, we advocate for new metrics and tools that evaluate not just final outputs but the structure of the reasoning process itself.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
ProcessBench: Identifying Process Errors in Mathematical Reasoning
As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.
MATHWELL: Generating Educational Math Word Problems at Scale
Math word problems are critical K-8 educational tools, but writing them is time-consuming and requires domain expertise. We suggest that language models can support K-8 math education by automatically generating problems at scale. To be educational, generated problems must be 1) solvable, 2) accurate, and 3) appropriate. Existing datasets are unlabeled for these criteria, making them ill-suited for training problem generators. We introduce MATHWELL, a Llama-2 (70B) model iteratively finetuned to generate K-8 math word problems using data from expert annotation. Using MATHWELL, we generate the largest English word problem dataset to date, containing 20,490 problems. 3,484 are scored by domain experts who find MATHWELL has a 40% higher share of problems that have executable solutions and meet all criteria than alternatives, with 74% of its problems with executable solutions being solvable, accurate, and appropriate.
Thinking Aloud: Dynamic Context Generation Improves Zero-Shot Reasoning Performance of GPT-2
Thinking aloud is an effective meta-cognitive strategy human reasoners apply to solve difficult problems. We suggest to improve the reasoning ability of pre-trained neural language models in a similar way, namely by expanding a task's context with problem elaborations that are dynamically generated by the language model itself. Our main result is that dynamic problem elaboration significantly improves the zero-shot performance of GPT-2 in a deductive reasoning and natural language inference task: While the model uses a syntactic heuristic for predicting an answer, it is capable (to some degree) of generating reasoned additional context which facilitates the successful application of its heuristic. We explore different ways of generating elaborations, including fewshot learning, and find that their relative performance varies with the specific problem characteristics (such as problem difficulty). Moreover, the effectiveness of an elaboration can be explained in terms of the degree to which the elaboration semantically coheres with the corresponding problem. In particular, elaborations that are most faithful to the original problem description may boost accuracy by up to 24%.
Beyond the Last Answer: Your Reasoning Trace Uncovers More than You Think
Large Language Models (LLMs) leverage step-by-step reasoning to solve complex problems. Standard evaluation practice involves generating a complete reasoning trace and assessing the correctness of the final answer presented at its conclusion. In this paper, we challenge the reliance on the final answer by posing the following two questions: Does the final answer reliably represent the model's optimal conclusion? Can alternative reasoning paths yield different results? To answer these questions, we analyze intermediate reasoning steps, termed subthoughts, and propose a method based on our findings. Our approach involves segmenting a reasoning trace into sequential subthoughts based on linguistic cues. We start by prompting the model to generate continuations from the end-point of each intermediate subthought. We extract a potential answer from every completed continuation originating from different subthoughts. We find that aggregating these answers by selecting the most frequent one (the mode) often yields significantly higher accuracy compared to relying solely on the answer derived from the original complete trace. Analyzing the consistency among the answers derived from different subthoughts reveals characteristics that correlate with the model's confidence and correctness, suggesting potential for identifying less reliable answers. Our experiments across various LLMs and challenging mathematical reasoning datasets (AIME2024 and AIME2025) show consistent accuracy improvements, with gains reaching up to 13\% and 10\% respectively. Implementation is available at: https://github.com/hammoudhasan/SubthoughtReasoner.
LLMs as Method Actors: A Model for Prompt Engineering and Architecture
We introduce "Method Actors" as a mental model for guiding LLM prompt engineering and prompt architecture. Under this mental model, LLMs should be thought of as actors; prompts as scripts and cues; and LLM responses as performances. We apply this mental model to the task of improving LLM performance at playing Connections, a New York Times word puzzle game that prior research identified as a challenging benchmark for evaluating LLM reasoning. Our experiments with GPT-4o show that a "Method Actors" approach can significantly improve LLM performance over both a vanilla and "Chain of Thoughts" approach. A vanilla approach solves 27% of Connections puzzles in our dataset and a "Chain of Thoughts" approach solves 41% of puzzles, whereas our strongest "Method Actor" approach solves 86% of puzzles. We also test OpenAI's newest model designed specifically for complex reasoning tasks, o1-preview. When asked to solve a puzzle all at once, o1-preview solves 79% of Connections puzzles in our dataset, and when allowed to build puzzle solutions one guess at a time over multiple API calls, o1-preview solves 100% of the puzzles. Incorporating a "Method Actor" prompt architecture increases the percentage of puzzles that o1-preview solves perfectly from 76% to 87%.
Towards Better Understanding of Program-of-Thought Reasoning in Cross-Lingual and Multilingual Environments
Multi-step reasoning is essential for large language models (LLMs), yet multilingual performance remains challenging. While Chain-of-Thought (CoT) prompting improves reasoning, it struggles with non-English languages due to the entanglement of reasoning and execution. Program-of-Thought (PoT) prompting separates reasoning from execution, offering a promising alternative but shifting the challenge to generating programs from non-English questions. We propose a framework to evaluate PoT by separating multilingual reasoning from code execution to examine (i) the impact of fine-tuning on question-reasoning alignment and (ii) how reasoning quality affects answer correctness. Our findings demonstrate that PoT fine-tuning substantially enhances multilingual reasoning, outperforming CoT fine-tuned models. We further demonstrate a strong correlation between reasoning quality (measured through code quality) and answer accuracy, highlighting its potential as a test-time performance improvement heuristic.
Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise Generation
In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model's weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles, such as knowledge tracing and personalized learning. Concretely, we let GPT-3 be a math tutor and run two steps iteratively: 1) assessing the student model's current learning status on a GPT-generated exercise book, and 2) improving the student model by training it with tailored exercise samples generated by GPT-3. Experimental results reveal that our approach outperforms LLMs (e.g., GPT-3 and PaLM) in accuracy across three distinct benchmarks while employing significantly fewer parameters. Furthermore, we provide a comprehensive analysis of the various components within our methodology to substantiate their efficacy.
DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models
The rapid advancements in Vision-Language Models (VLMs) have shown great potential in tackling mathematical reasoning tasks that involve visual context. Unlike humans who can reliably apply solution steps to similar problems with minor modifications, we found that SOTA VLMs like GPT-4o can consistently fail in these scenarios, revealing limitations in their mathematical reasoning capabilities. In this paper, we investigate the mathematical reasoning robustness in VLMs and evaluate how well these models perform under different variants of the same question, such as changes in visual numerical values or function graphs. While several vision-based math benchmarks have been developed to assess VLMs' problem-solving capabilities, these benchmarks contain only static sets of problems and cannot easily evaluate mathematical reasoning robustness. To fill this gap, we introduce DynaMath, a dynamic visual math benchmark designed for in-depth assessment of VLMs. DynaMath includes 501 high-quality, multi-topic seed questions, each represented as a Python program. Those programs are carefully designed and annotated to enable the automatic generation of a much larger set of concrete questions, including many different types of visual and textual variations. DynaMath allows us to evaluate the generalization ability of VLMs, by assessing their performance under varying input conditions of a seed question. We evaluated 14 SOTA VLMs with 5,010 generated concrete questions. Our results show that the worst-case model accuracy, defined as the percentage of correctly answered seed questions in all 10 variants, is significantly lower than the average-case accuracy. Our analysis emphasizes the need to study the robustness of VLMs' reasoning abilities, and DynaMath provides valuable insights to guide the development of more reliable models for mathematical reasoning.
