new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Device to Device Pairs Sharding based on Distance

In the conventional cellular system, devices are not allowed to communicate directly with each other in the licensed cellular bandwidth and all communications take place through the base stations. The users requirements has led the technology to become fast and faster. Multimedia rich data exchange, fast service, high quality voice calls, newer and more demanding applications, information at fingertips, everything requires technology and communication between devices. A constant need to increase network capacity for meeting the users growing demands has led to the growth of cellular communication networks from the first generation(1G) to the fifth generation(5G). There will be crores of connected devices in the coming future . A large number of connections are going to be heterogeneous, demanding lesser delays, higher data rates, superior throughput and enhanced system capacity. The available spectrum resources are limited and has to be flexibly used by mobile network operators to cope with the rising demands. An emerging facilitator of the upcoming high data rate demanding next-generation networks are device-to-device(D2D) communication. This paper has developed a model that establishes Device-to-Device (D2D) communication between two end-users without involving the eNB (evolved Node B). We have sharded the UEs and CUs based on the criteria of DISTANCE. To do so, we used the K-means clustering method.

  • 5 authors
·
Oct 29, 2025

Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads

Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.

  • 7 authors
·
Jul 24, 2024 2