Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultimodal Language Modeling for High-Accuracy Single Cell Transcriptomics Analysis and Generation
Pre-trained language models (PLMs) have revolutionized scientific research, yet their application to single-cell analysis remains limited. Text PLMs cannot process single-cell RNA sequencing data, while cell PLMs lack the ability to handle free text, restricting their use in multimodal tasks. Existing efforts to bridge these modalities often suffer from information loss or inadequate single-modal pre-training, leading to suboptimal performances. To address these challenges, we propose Single-Cell MultiModal Generative Pre-trained Transformer (scMMGPT), a unified PLM for joint cell and text modeling. scMMGPT effectively integrates the state-of-the-art cell and text PLMs, facilitating cross-modal knowledge sharing for improved performance. To bridge the text-cell modality gap, scMMGPT leverages dedicated cross-modal projectors, and undergoes extensive pre-training on 27 million cells -- the largest dataset for multimodal cell-text PLMs to date. This large-scale pre-training enables scMMGPT to excel in joint cell-text tasks, achieving an 84\% relative improvement of textual discrepancy for cell description generation, 20.5\% higher accuracy for cell type annotation, and 4\% improvement in k-NN accuracy for text-conditioned pseudo-cell generation, outperforming baselines.
The Berkeley Single Cell Computational Microscopy (BSCCM) Dataset
Computational microscopy, in which hardware and algorithms of an imaging system are jointly designed, shows promise for making imaging systems that cost less, perform more robustly, and collect new types of information. Often, the performance of computational imaging systems, especially those that incorporate machine learning, is sample-dependent. Thus, standardized datasets are an essential tool for comparing the performance of different approaches. Here, we introduce the Berkeley Single Cell Computational Microscopy (BSCCM) dataset, which contains over ~12,000,000 images of 400,000 of individual white blood cells. The dataset contains images captured with multiple illumination patterns on an LED array microscope and fluorescent measurements of the abundance of surface proteins that mark different cell types. We hope this dataset will provide a valuable resource for the development and testing of new algorithms in computational microscopy and computer vision with practical biomedical applications.
OmniCellTOSG: The First Cell Text-Omic Signaling Graphs Dataset for Joint LLM and GNN Modeling
Complex cell signaling systems -- governed by varying protein abundances and interactions -- generate diverse cell types across organs. These systems evolve under influences such as age, sex, diet, environmental exposures, and diseases, making them challenging to decode given the involvement of tens of thousands of genes and proteins. Recently, hundreds of millions of single-cell omics data have provided a robust foundation for understanding these signaling networks within various cell subpopulations and conditions. Inspired by the success of large foundation models (for example, large language models and large vision models) pre-trained on massive datasets, we introduce OmniCellTOSG, the first dataset of cell text-omic signaling graphs (TOSGs). Each TOSG represents the signaling network of an individual or meta-cell and is labeled with information such as organ, disease, sex, age, and cell subtype. OmniCellTOSG offers two key contributions. First, it introduces a novel graph model that integrates human-readable annotations -- such as biological functions, cellular locations, signaling pathways, related diseases, and drugs -- with quantitative gene and protein abundance data, enabling graph reasoning to decode cell signaling. This approach calls for new joint models combining large language models and graph neural networks. Second, the dataset is built from single-cell RNA sequencing data of approximately 120 million cells from diverse tissues and conditions (healthy and diseased) and is fully compatible with PyTorch. This facilitates the development of innovative cell signaling models that could transform research in life sciences, healthcare, and precision medicine. The OmniCellTOSG dataset is continuously expanding and will be updated regularly. The dataset and code are available at https://github.com/FuhaiLiAiLab/OmniCellTOSG.
A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
LangCell: Language-Cell Pre-training for Cell Identity Understanding
Cell identity encompasses various semantic aspects of a cell, including cell type, pathway information, disease information, and more, which are essential for biologists to gain insights into its biological characteristics. Understanding cell identity from the transcriptomic data, such as annotating cell types, has become an important task in bioinformatics. As these semantic aspects are determined by human experts, it is impossible for AI models to effectively carry out cell identity understanding tasks without the supervision signals provided by single-cell and label pairs. The single-cell pre-trained language models (PLMs) currently used for this task are trained only on a single modality, transcriptomics data, lack an understanding of cell identity knowledge. As a result, they have to be fine-tuned for downstream tasks and struggle when lacking labeled data with the desired semantic labels. To address this issue, we propose an innovative solution by constructing a unified representation of single-cell data and natural language during the pre-training phase, allowing the model to directly incorporate insights related to cell identity. More specifically, we introduce LangCell, the first Language-Cell pre-training framework. LangCell utilizes texts enriched with cell identity information to gain a profound comprehension of cross-modal knowledge. Results from experiments conducted on different benchmarks show that LangCell is the only single-cell PLM that can work effectively in zero-shot cell identity understanding scenarios, and also significantly outperforms existing models in few-shot and fine-tuning cell identity understanding scenarios.
Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data
Over the past decade, the revolution in single-cell sequencing has enabled the simultaneous molecular profiling of various modalities across thousands of individual cells, allowing scientists to investigate the diverse functions of complex tissues and uncover underlying disease mechanisms. Among all the analytical steps, assigning individual cells to specific types is fundamental for understanding cellular heterogeneity. However, this process is usually labor-intensive and requires extensive expert knowledge. Recent advances in large language models (LLMs) have demonstrated their ability to efficiently process and synthesize vast corpora of text to automatically extract essential biological knowledge, such as marker genes, potentially promoting more efficient and automated cell type annotations. To thoroughly evaluate the capability of modern instruction-tuned LLMs in automating the cell type identification process, we introduce SOAR, a comprehensive benchmarking study of LLMs for cell type annotation tasks in single-cell genomics. Specifically, we assess the performance of 8 instruction-tuned LLMs across 11 datasets, spanning multiple cell types and species. Our study explores the potential of LLMs to accurately classify and annotate cell types in single-cell RNA sequencing (scRNA-seq) data, while extending their application to multiomics data through cross-modality translation. Additionally, we evaluate the effectiveness of chain-of-thought (CoT) prompting techniques in generating detailed biological insights during the annotation process. The results demonstrate that LLMs can provide robust interpretations of single-cell data without requiring additional fine-tuning, advancing the automation of cell type annotation in genomics research.
Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution
Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery.
LLM4Cell: A Survey of Large Language and Agentic Models for Single-Cell Biology
Large language models (LLMs) and emerging agentic frameworks are beginning to transform single-cell biology by enabling natural-language reasoning, generative annotation, and multimodal data integration. However, progress remains fragmented across data modalities, architectures, and evaluation standards. LLM4Cell presents the first unified survey of 58 foundation and agentic models developed for single-cell research, spanning RNA, ATAC, multi-omic, and spatial modalities. We categorize these methods into five families-foundation, text-bridge, spatial, multimodal, epigenomic, and agentic-and map them to eight key analytical tasks including annotation, trajectory and perturbation modeling, and drug-response prediction. Drawing on over 40 public datasets, we analyze benchmark suitability, data diversity, and ethical or scalability constraints, and evaluate models across 10 domain dimensions covering biological grounding, multi-omics alignment, fairness, privacy, and explainability. By linking datasets, models, and evaluation domains, LLM4Cell provides the first integrated view of language-driven single-cell intelligence and outlines open challenges in interpretability, standardization, and trustworthy model development.
An Instance Segmentation Dataset of Yeast Cells in Microstructures
Extracting single-cell information from microscopy data requires accurate instance-wise segmentations. Obtaining pixel-wise segmentations from microscopy imagery remains a challenging task, especially with the added complexity of microstructured environments. This paper presents a novel dataset for segmenting yeast cells in microstructures. We offer pixel-wise instance segmentation labels for both cells and trap microstructures. In total, we release 493 densely annotated microscopy images. To facilitate a unified comparison between novel segmentation algorithms, we propose a standardized evaluation strategy for our dataset. The aim of the dataset and evaluation strategy is to facilitate the development of new cell segmentation approaches. The dataset is publicly available at https://christophreich1996.github.io/yeast_in_microstructures_dataset/ .
RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods
High-throughput screening techniques are commonly used to obtain large quantities of data in many fields of biology. It is well known that artifacts arising from variability in the technical execution of different experimental batches within such screens confound these observations and can lead to invalid biological conclusions. It is therefore necessary to account for these batch effects when analyzing outcomes. In this paper we describe RxRx1, a biological dataset designed specifically for the systematic study of batch effect correction methods. The dataset consists of 125,510 high-resolution fluorescence microscopy images of human cells under 1,138 genetic perturbations in 51 experimental batches across 4 cell types. Visual inspection of the images alone clearly demonstrates significant batch effects. We propose a classification task designed to evaluate the effectiveness of experimental batch correction methods on these images and examine the performance of a number of correction methods on this task. Our goal in releasing RxRx1 is to encourage the development of effective experimental batch correction methods that generalize well to unseen experimental batches. The dataset can be downloaded at https://rxrx.ai.
The TYC Dataset for Understanding Instance-Level Semantics and Motions of Cells in Microstructures
Segmenting cells and tracking their motion over time is a common task in biomedical applications. However, predicting accurate instance-wise segmentation and cell motions from microscopy imagery remains a challenging task. Using microstructured environments for analyzing single cells in a constant flow of media adds additional complexity. While large-scale labeled microscopy datasets are available, we are not aware of any large-scale dataset, including both cells and microstructures. In this paper, we introduce the trapped yeast cell (TYC) dataset, a novel dataset for understanding instance-level semantics and motions of cells in microstructures. We release 105 dense annotated high-resolution brightfield microscopy images, including about 19k instance masks. We also release 261 curated video clips composed of 1293 high-resolution microscopy images to facilitate unsupervised understanding of cell motions and morphology. TYC offers ten times more instance annotations than the previously largest dataset, including cells and microstructures. Our effort also exceeds previous attempts in terms of microstructure variability, resolution, complexity, and capturing device (microscopy) variability. We facilitate a unified comparison on our novel dataset by introducing a standardized evaluation strategy. TYC and evaluation code are publicly available under CC BY 4.0 license.
Patherea: Cell Detection and Classification for the 2020s
This paper presents a Patherea, a framework for point-based cell detection and classification that provides a complete solution for developing and evaluating state-of-the-art approaches. We introduce a large-scale dataset collected to directly replicate a clinical workflow for Ki-67 proliferation index estimation and use it to develop an efficient point-based approach that directly predicts point-based predictions, without the need for intermediate representations. The proposed approach effectively utilizes point proposal candidates with the hybrid Hungarian matching strategy and a flexible architecture that enables the usage of various backbones and (pre)training strategies. We report state-of-the-art results on existing public datasets - Lizard, BRCA-M2C, BCData, and the newly proposed Patherea dataset. We show that the performance on existing public datasets is saturated and that the newly proposed Patherea dataset represents a significantly harder challenge for the recently proposed approaches. We also demonstrate the effectiveness of recently proposed pathology foundational models that our proposed approach can natively utilize and benefit from. We also revisit the evaluation protocol that is used in the broader field of cell detection and classification and identify the erroneous calculation of performance metrics. Patherea provides a benchmarking utility that addresses the identified issues and enables a fair comparison of different approaches. The dataset and the code will be publicly released upon acceptance.
scE^2TM: Toward Interpretable Single-Cell Embedding via Topic Modeling
Recent advances in sequencing technologies have enabled researchers to explore cellular heterogeneity at single-cell resolution. Meanwhile, interpretability has gained prominence parallel to the rapid increase in the complexity and performance of deep learning models. In recent years, topic models have been widely used for interpretable single-cell embedding learning and clustering analysis, which we refer to as single-cell embedded topic models. However, previous studies evaluated the interpretability of the models mainly through qualitative analysis, and these single-cell embedded topic models suffer from the potential problem of interpretation collapse. Furthermore, their neglect of external biological knowledge constrains analytical performance. Here, we present scE2TM, an external knowledge-guided single-cell embedded topic model that provides a high-quality cell embedding and strong interpretation, contributing to comprehensive scRNA-seq data analysis. Our comprehensive evaluation across 20 scRNA-seq datasets demonstrates that scE2TM achieves significant clustering performance gains compared to 7 state-of-the-art methods. In addition, we propose a new interpretability evaluation benchmark that introduces 10 metrics to quantitatively assess the interpretability of single-cell embedded topic models. The results show that the interpretation provided by scE2TM performs encouragingly in terms of diversity and consistency with the underlying biological signals, contributing to a better revealing of the underlying biological mechanisms.
Integrating Biological Knowledge for Robust Microscopy Image Profiling on De Novo Cell Lines
High-throughput screening techniques, such as microscopy imaging of cellular responses to genetic and chemical perturbations, play a crucial role in drug discovery and biomedical research. However, robust perturbation screening for de novo cell lines remains challenging due to the significant morphological and biological heterogeneity across cell lines. To address this, we propose a novel framework that integrates external biological knowledge into existing pretraining strategies to enhance microscopy image profiling models. Our approach explicitly disentangles perturbation-specific and cell line-specific representations using external biological information. Specifically, we construct a knowledge graph leveraging protein interaction data from STRING and Hetionet databases to guide models toward perturbation-specific features during pretraining. Additionally, we incorporate transcriptomic features from single-cell foundation models to capture cell line-specific representations. By learning these disentangled features, our method improves the generalization of imaging models to de novo cell lines. We evaluate our framework on the RxRx database through one-shot fine-tuning on an RxRx1 cell line and few-shot fine-tuning on cell lines from the RxRx19a dataset. Experimental results demonstrate that our method enhances microscopy image profiling for de novo cell lines, highlighting its effectiveness in real-world phenotype-based drug discovery applications.
TEDDY: A Family Of Foundation Models For Understanding Single Cell Biology
Understanding the biological mechanism of disease is critical for medicine, and in particular drug discovery. AI-powered analysis of genome-scale biological data hold great potential in this regard. The increasing availability of single-cell RNA sequencing data has enabled the development of large foundation models for disease biology. However, existing foundation models either do not improve or only modestly improve over task-specific models in downstream applications. Here, we explored two avenues for improving the state-of-the-art. First, we scaled the pre-training dataset to 116 million cells, which is larger than those used by previous models. Second, we leveraged the availability of large-scale biological annotations as a form of supervision during pre-training. We trained the TEDDY family of models comprising six transformer-based state-of-the-art single-cell foundation models with 70 million, 160 million, and 400 million parameters. We vetted our models on two downstream evaluation tasks -- identifying the underlying disease state of held-out donors not seen during training and distinguishing healthy cells from diseased ones for disease conditions and donors not seen during training. Scaling experiments showed that performance improved predictably with both data volume and parameter count. Our models showed substantial improvement over existing work on the first task and more muted improvements on the second.
STimage-1K4M: A histopathology image-gene expression dataset for spatial transcriptomics
Recent advances in multi-modal algorithms have driven and been driven by the increasing availability of large image-text datasets, leading to significant strides in various fields, including computational pathology. However, in most existing medical image-text datasets, the text typically provides high-level summaries that may not sufficiently describe sub-tile regions within a large pathology image. For example, an image might cover an extensive tissue area containing cancerous and healthy regions, but the accompanying text might only specify that this image is a cancer slide, lacking the nuanced details needed for in-depth analysis. In this study, we introduce STimage-1K4M, a novel dataset designed to bridge this gap by providing genomic features for sub-tile images. STimage-1K4M contains 1,149 images derived from spatial transcriptomics data, which captures gene expression information at the level of individual spatial spots within a pathology image. Specifically, each image in the dataset is broken down into smaller sub-image tiles, with each tile paired with 15,000-30,000 dimensional gene expressions. With 4,293,195 pairs of sub-tile images and gene expressions, STimage-1K4M offers unprecedented granularity, paving the way for a wide range of advanced research in multi-modal data analysis an innovative applications in computational pathology, and beyond.
HR-VILAGE-3K3M: A Human Respiratory Viral Immunization Longitudinal Gene Expression Dataset for Systems Immunity
Respiratory viral infections pose a global health burden, yet the cellular immune responses driving protection or pathology remain unclear. Natural infection cohorts often lack pre-exposure baseline data and structured temporal sampling. In contrast, inoculation and vaccination trials generate insightful longitudinal transcriptomic data. However, the scattering of these datasets across platforms, along with inconsistent metadata and preprocessing procedure, hinders AI-driven discovery. To address these challenges, we developed the Human Respiratory Viral Immunization LongitudinAl Gene Expression (HR-VILAGE-3K3M) repository: an AI-ready, rigorously curated dataset that integrates 14,136 RNA-seq profiles from 3,178 subjects across 66 studies encompassing over 2.56 million cells. Spanning vaccination, inoculation, and mixed exposures, the dataset includes microarray, bulk RNA-seq, and single-cell RNA-seq from whole blood, PBMCs, and nasal swabs, sourced from GEO, ImmPort, and ArrayExpress. We harmonized subject-level metadata, standardized outcome measures, applied unified preprocessing pipelines with rigorous quality control, and aligned all data to official gene symbols. To demonstrate the utility of HR-VILAGE-3K3M, we performed predictive modeling of vaccine responders and evaluated batch-effect correction methods. Beyond these initial demonstrations, it supports diverse systems immunology applications and benchmarking of feature selection and transfer learning algorithms. Its scale and heterogeneity also make it ideal for pretraining foundation models of the human immune response and for advancing multimodal learning frameworks. As the largest longitudinal transcriptomic resource for human respiratory viral immunization, it provides an accessible platform for reproducible AI-driven research, accelerating systems immunology and vaccine development against emerging viral threats.
CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis
Single-cell RNA sequencing (scRNA-seq) data analysis is crucial for biological research, as it enables the precise characterization of cellular heterogeneity. However, manual manipulation of various tools to achieve desired outcomes can be labor-intensive for researchers. To address this, we introduce CellAgent (http://cell.agent4science.cn/), an LLM-driven multi-agent framework, specifically designed for the automatic processing and execution of scRNA-seq data analysis tasks, providing high-quality results with no human intervention. Firstly, to adapt general LLMs to the biological field, CellAgent constructs LLM-driven biological expert roles - planner, executor, and evaluator - each with specific responsibilities. Then, CellAgent introduces a hierarchical decision-making mechanism to coordinate these biological experts, effectively driving the planning and step-by-step execution of complex data analysis tasks. Furthermore, we propose a self-iterative optimization mechanism, enabling CellAgent to autonomously evaluate and optimize solutions, thereby guaranteeing output quality. We evaluate CellAgent on a comprehensive benchmark dataset encompassing dozens of tissues and hundreds of distinct cell types. Evaluation results consistently show that CellAgent effectively identifies the most suitable tools and hyperparameters for single-cell analysis tasks, achieving optimal performance. This automated framework dramatically reduces the workload for science data analyses, bringing us into the "Agent for Science" era.
An AI system to help scientists write expert-level empirical software
The cycle of scientific discovery is frequently bottlenecked by the slow, manual creation of software to support computational experiments. To address this, we present an AI system that creates expert-level scientific software whose goal is to maximize a quality metric. The system uses a Large Language Model (LLM) and Tree Search (TS) to systematically improve the quality metric and intelligently navigate the large space of possible solutions. The system achieves expert-level results when it explores and integrates complex research ideas from external sources. The effectiveness of tree search is demonstrated across a wide range of benchmarks. In bioinformatics, it discovered 40 novel methods for single-cell data analysis that outperformed the top human-developed methods on a public leaderboard. In epidemiology, it generated 14 models that outperformed the CDC ensemble and all other individual models for forecasting COVID-19 hospitalizations. Our method also produced state-of-the-art software for geospatial analysis, neural activity prediction in zebrafish, time series forecasting and numerical solution of integrals. By devising and implementing novel solutions to diverse tasks, the system represents a significant step towards accelerating scientific progress.
ChatCell: Facilitating Single-Cell Analysis with Natural Language
As Large Language Models (LLMs) rapidly evolve, their influence in science is becoming increasingly prominent. The emerging capabilities of LLMs in task generalization and free-form dialogue can significantly advance fields like chemistry and biology. However, the field of single-cell biology, which forms the foundational building blocks of living organisms, still faces several challenges. High knowledge barriers and limited scalability in current methods restrict the full exploitation of LLMs in mastering single-cell data, impeding direct accessibility and rapid iteration. To this end, we introduce ChatCell, which signifies a paradigm shift by facilitating single-cell analysis with natural language. Leveraging vocabulary adaptation and unified sequence generation, ChatCell has acquired profound expertise in single-cell biology and the capability to accommodate a diverse range of analysis tasks. Extensive experiments further demonstrate ChatCell's robust performance and potential to deepen single-cell insights, paving the way for more accessible and intuitive exploration in this pivotal field. Our project homepage is available at https://zjunlp.github.io/project/ChatCell.
CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen
Generative modeling of single-cell RNA-seq data has shown invaluable potential in community-driven tasks such as trajectory inference, batch effect removal and gene expression generation. However, most recent deep models generating synthetic single cells from noise operate on pre-processed continuous gene expression approximations, ignoring the inherently discrete and over-dispersed nature of single-cell data, which limits downstream applications and hinders the incorporation of robust noise models. Moreover, crucial aspects of deep-learning-based synthetic single-cell generation remain underexplored, such as controllable multi-modal and multi-label generation and its role in the performance enhancement of downstream tasks. This work presents Cell Flow for Generation (CFGen), a flow-based conditional generative model for multi-modal single-cell counts, which explicitly accounts for the discrete nature of the data. Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks such as conditioning on multiple attributes and boosting rare cell type classification via data augmentation. By showcasing CFGen on a diverse set of biological datasets and settings, we provide evidence of its value to the fields of computational biology and deep generative models.
BigBIO: A Framework for Data-Centric Biomedical Natural Language Processing
Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a diversity of novel pretraining tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBIO a community library of 126+ biomedical NLP datasets, currently covering 12 task categories and 10+ languages. BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBIO is an ongoing community effort and is available at https://github.com/bigscience-workshop/biomedical
The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models
Introduction: The scientific publishing landscape is expanding rapidly, creating challenges for researchers to stay up-to-date with the evolution of the literature. Natural Language Processing (NLP) has emerged as a potent approach to automating knowledge extraction from this vast amount of publications and preprints. Tasks such as Named-Entity Recognition (NER) and Named-Entity Linking (NEL), in conjunction with context-dependent semantic interpretation, offer promising and complementary approaches to extracting structured information and revealing key concepts. Results: We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process. A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends. We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components, cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, and the nature of the experimental method as an additional class. SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in 3,223 papers in molecular and cell biology. We illustrate the dataset's usefulness by assessing BioLinkBERT and PubmedBERT, two transformers-based models, fine-tuned on the SourceData-NLP dataset for NER. We also introduce a novel context-dependent semantic task that infers whether an entity is the target of a controlled intervention or the object of measurement. Conclusions: SourceData-NLP's scale highlights the value of integrating curation into publishing. Models trained with SourceData-NLP will furthermore enable the development of tools able to extract causal hypotheses from the literature and assemble them into knowledge graphs.
HEST-1k: A Dataset for Spatial Transcriptomics and Histology Image Analysis
Spatial transcriptomics (ST) enables interrogating the molecular composition of tissue with ever-increasing resolution, depth, and sensitivity. However, costs, rapidly evolving technology, and lack of standards have constrained computational methods in ST to narrow tasks and small cohorts. In addition, the underlying tissue morphology as reflected by H&E-stained whole slide images (WSIs) encodes rich information often overlooked in ST studies. Here, we introduce HEST-1k, a collection of 1,108 spatial transcriptomic profiles, each linked to a WSI and metadata. HEST-1k was assembled using HEST-Library from 131 public and internal cohorts encompassing 25 organs, two species (Homo Sapiens and Mus Musculus), and 320 cancer samples from 25 cancer types. HEST-1k processing enabled the identification of 1.5 million expression--morphology pairs and 60 million nuclei. HEST-1k is tested on three use cases: (1) benchmarking foundation models for histopathology (HEST-Benchmark), (2) biomarker identification, and (3) multimodal representation learning. HEST-1k, HEST-Library, and HEST-Benchmark can be freely accessed via https://github.com/mahmoodlab/hest.
Invariant Risk Minimisation for Cross-Organism Inference: Substituting Mouse Data for Human Data in Human Risk Factor Discovery
Human medical data can be challenging to obtain due to data privacy concerns, difficulties conducting certain types of experiments, or prohibitive associated costs. In many settings, data from animal models or in-vitro cell lines are available to help augment our understanding of human data. However, this data is known for having low etiological validity in comparison to human data. In this work, we augment small human medical datasets with in-vitro data and animal models. We use Invariant Risk Minimisation (IRM) to elucidate invariant features by considering cross-organism data as belonging to different data-generating environments. Our models identify genes of relevance to human cancer development. We observe a degree of consistency between varying the amounts of human and mouse data used, however, further work is required to obtain conclusive insights. As a secondary contribution, we enhance existing open source datasets and provide two uniformly processed, cross-organism, homologue gene-matched datasets to the community.
MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension
The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.
Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning
Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.
scMamba: A Pre-Trained Model for Single-Nucleus RNA Sequencing Analysis in Neurodegenerative Disorders
Single-nucleus RNA sequencing (snRNA-seq) has significantly advanced our understanding of the disease etiology of neurodegenerative disorders. However, the low quality of specimens derived from postmortem brain tissues, combined with the high variability caused by disease heterogeneity, makes it challenging to integrate snRNA-seq data from multiple sources for precise analyses. To address these challenges, we present scMamba, a pre-trained model designed to improve the quality and utility of snRNA-seq analysis, with a particular focus on neurodegenerative diseases. Inspired by the recent Mamba model, scMamba introduces a novel architecture that incorporates a linear adapter layer, gene embeddings, and bidirectional Mamba blocks, enabling efficient processing of snRNA-seq data while preserving information from the raw input. Notably, scMamba learns generalizable features of cells and genes through pre-training on snRNA-seq data, without relying on dimension reduction or selection of highly variable genes. We demonstrate that scMamba outperforms benchmark methods in various downstream tasks, including cell type annotation, doublet detection, imputation, and the identification of differentially expressed genes.
BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature
The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.
White-Box Diffusion Transformer for single-cell RNA-seq generation
As a powerful tool for characterizing cellular subpopulations and cellular heterogeneity, single cell RNA sequencing (scRNA-seq) technology offers advantages of high throughput and multidimensional analysis. However, the process of data acquisition is often constrained by high cost and limited sample availability. To overcome these limitations, we propose a hybrid model based on Diffusion model and White-Box transformer that aims to generate synthetic and biologically plausible scRNA-seq data. Diffusion model progressively introduce noise into the data and then recover the original data through a denoising process, a forward and reverse process that is particularly suitable for generating complex data distributions. White-Box transformer is a deep learning architecture that emphasizes mathematical interpretability. By minimizing the encoding rate of the data and maximizing the sparsity of the representation, it not only reduces the computational burden, but also provides clear insight into underlying structure. Our White-Box Diffusion Transformer combines the generative capabilities of Diffusion model with the mathematical interpretability of White-Box transformer. Through experiments using six different single-cell RNA-Seq datasets, we visualize both generated and real data using t-SNE dimensionality reduction technique, as well as quantify similarity between generated and real data using various metrics to demonstrate comparable performance of White-Box Diffusion Transformer and Diffusion Transformer in generating scRNA-seq data alongside significant improvements in training efficiency and resource utilization. Our code is available at https://github.com/lingximamo/White-Box-Diffusion-Transformer
Datasets for Large Language Models: A Comprehensive Survey
This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.
Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
We introduce Arboretum, the largest publicly accessible dataset designed to advance AI for biodiversity applications. This dataset, curated from the iNaturalist community science platform and vetted by domain experts to ensure accuracy, includes 134.6 million images, surpassing existing datasets in scale by an order of magnitude. The dataset encompasses image-language paired data for a diverse set of species from birds (Aves), spiders/ticks/mites (Arachnida), insects (Insecta), plants (Plantae), fungus/mushrooms (Fungi), snails (Mollusca), and snakes/lizards (Reptilia), making it a valuable resource for multimodal vision-language AI models for biodiversity assessment and agriculture research. Each image is annotated with scientific names, taxonomic details, and common names, enhancing the robustness of AI model training. We showcase the value of Arboretum by releasing a suite of CLIP models trained using a subset of 40 million captioned images. We introduce several new benchmarks for rigorous assessment, report accuracy for zero-shot learning, and evaluations across life stages, rare species, confounding species, and various levels of the taxonomic hierarchy. We anticipate that Arboretum will spur the development of AI models that can enable a variety of digital tools ranging from pest control strategies, crop monitoring, and worldwide biodiversity assessment and environmental conservation. These advancements are critical for ensuring food security, preserving ecosystems, and mitigating the impacts of climate change. Arboretum is publicly available, easily accessible, and ready for immediate use. Please see the https://baskargroup.github.io/Arboretum/{project website} for links to our data, models, and code.
HISTAI: An Open-Source, Large-Scale Whole Slide Image Dataset for Computational Pathology
Recent advancements in Digital Pathology (DP), particularly through artificial intelligence and Foundation Models, have underscored the importance of large-scale, diverse, and richly annotated datasets. Despite their critical role, publicly available Whole Slide Image (WSI) datasets often lack sufficient scale, tissue diversity, and comprehensive clinical metadata, limiting the robustness and generalizability of AI models. In response, we introduce the HISTAI dataset, a large, multimodal, open-access WSI collection comprising over 60,000 slides from various tissue types. Each case in the HISTAI dataset is accompanied by extensive clinical metadata, including diagnosis, demographic information, detailed pathological annotations, and standardized diagnostic coding. The dataset aims to fill gaps identified in existing resources, promoting innovation, reproducibility, and the development of clinically relevant computational pathology solutions. The dataset can be accessed at https://github.com/HistAI/HISTAI.
Presenting an extensive lab- and field-image dataset of crops and weeds for computer vision tasks in agriculture
We present two large datasets of labelled plant-images that are suited towards the training of machine learning and computer vision models. The first dataset encompasses as the day of writing over 1.2 million images of indoor-grown crops and weeds common to the Canadian Prairies and many US states. The second dataset consists of over 540,000 images of plants imaged in farmland. All indoor plant images are labelled by species and we provide rich etadata on the level of individual images. This comprehensive database allows to filter the datasets under user-defined specifications such as for example the crop-type or the age of the plant. Furthermore, the indoor dataset contains images of plants taken from a wide variety of angles, including profile shots, top-down shots, and angled perspectives. The images taken from plants in fields are all from a top-down perspective and contain usually multiple plants per image. For these images metadata is also available. In this paper we describe both datasets' characteristics with respect to plant variety, plant age, and number of images. We further introduce an open-access sample of the indoor-dataset that contains 1,000 images of each species covered in our dataset. These, in total 14,000 images, had been selected, such that they form a representative sample with respect to plant age and ndividual plants per species. This sample serves as a quick entry point for new users to the dataset, allowing them to explore the data on a small scale and find the parameters of data most useful for their application without having to deal with hundreds of thousands of individual images.
Mixed Effects Deep Learning for the interpretable analysis of single cell RNA sequencing data by quantifying and visualizing batch effects
Single-cell RNA sequencing (scRNA-seq) data are often confounded by technical or biological batch effects. Existing deep learning models mitigate these effects but often discard batch-specific information, potentially losing valuable biological insights. We propose a Mixed Effects Deep Learning (MEDL) autoencoder framework that separately models batch-invariant (fixed effects) and batch-specific (random effects) components. By decoupling batch-invariant biological states from batch variations, our framework integrates both into predictive models. Our approach also generates 2D visualizations of how the same cell appears across batches, enhancing interpretability. Retaining both fixed and random effect latent spaces improves classification accuracy. We applied our framework to three datasets spanning the cardiovascular system (Healthy Heart), Autism Spectrum Disorder (ASD), and Acute Myeloid Leukemia (AML). With 147 batches in the Healthy Heart dataset, far exceeding typical numbers, we tested our framework's ability to handle many batches. In the ASD dataset, our approach captured donor heterogeneity between autistic and healthy individuals. In the AML dataset, it distinguished donor heterogeneity despite missing cell types and diseased donors exhibiting both healthy and malignant cells. These results highlight our framework's ability to characterize fixed and random effects, enhance batch effect visualization, and improve prediction accuracy across diverse datasets.
Benchmarking and optimizing organism wide single-cell RNA alignment methods
Many methods have been proposed for removing batch effects and aligning single-cell RNA (scRNA) datasets. However, performance is typically evaluated based on multiple parameters and few datasets, creating challenges in assessing which method is best for aligning data at scale. Here, we introduce the K-Neighbors Intersection (KNI) score, a single score that both penalizes batch effects and measures accuracy at cross-dataset cell-type label prediction alongside carefully curated small (scMARK) and large (scREF) benchmarks comprising 11 and 46 human scRNA studies respectively, where we have standardized author labels. Using the KNI score, we evaluate and optimize approaches for cross-dataset single-cell RNA integration. We introduce Batch Adversarial single-cell Variational Inference (BA-scVI), as a new variant of scVI that uses adversarial training to penalize batch-effects in the encoder and decoder, and show this approach outperforms other methods. In the resulting aligned space, we find that the granularity of cell-type groupings is conserved, supporting the notion that whole-organism cell-type maps can be created by a single model without loss of information.
PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics
Rapid advancement of machine learning solutions has often coincided with the production of a test public data set. Such datasets reduce the largest barrier to entry for tackling a problem -- procuring data -- while also providing a benchmark to compare different solutions. Furthermore, large datasets have been used to train high-performing feature finders which are then used in new approaches to problems beyond that initially defined. In order to encourage the rapid development in the analysis of data collected using liquid argon time projection chambers, a class of particle detectors used in high energy physics experiments, we have produced the PILArNet, first 2D and 3D open dataset to be used for a couple of key analysis tasks. The initial dataset presented in this paper contains 300,000 samples simulated and recorded in three different volume sizes. The dataset is stored efficiently in sparse 2D and 3D matrix format with auxiliary information about simulated particles in the volume, and is made available for public research use. In this paper we describe the dataset, tasks, and the method used to procure the sample.
BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models
Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.
A Large-Scale Benchmark of Cross-Modal Learning for Histology and Gene Expression in Spatial Transcriptomics
Spatial transcriptomics enables simultaneous measurement of gene expression and tissue morphology, offering unprecedented insights into cellular organization and disease mechanisms. However, the field lacks comprehensive benchmarks for evaluating multimodal learning methods that leverage both histology images and gene expression data. Here, we present HESCAPE, a large-scale benchmark for cross-modal contrastive pretraining in spatial transcriptomics, built on a curated pan-organ dataset spanning 6 different gene panels and 54 donors. We systematically evaluated state-of-the-art image and gene expression encoders across multiple pretraining strategies and assessed their effectiveness on two downstream tasks: gene mutation classification and gene expression prediction. Our benchmark demonstrates that gene expression encoders are the primary determinant of strong representational alignment, and that gene models pretrained on spatial transcriptomics data outperform both those trained without spatial data and simple baseline approaches. However, downstream task evaluation reveals a striking contradiction: while contrastive pretraining consistently improves gene mutation classification performance, it degrades direct gene expression prediction compared to baseline encoders trained without cross-modal objectives. We identify batch effects as a key factor that interferes with effective cross-modal alignment. Our findings highlight the critical need for batch-robust multimodal learning approaches in spatial transcriptomics. To accelerate progress in this direction, we release HESCAPE, providing standardized datasets, evaluation protocols, and benchmarking tools for the community
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
SciCat: A Curated Dataset of Scientific Software Repositories
The proliferation of open-source scientific software for science and research presents opportunities and challenges. In this paper, we introduce the SciCat dataset -- a comprehensive collection of Free-Libre Open Source Software (FLOSS) projects, designed to address the need for a curated repository of scientific and research software. This collection is crucial for understanding the creation of scientific software and aiding in its development. To ensure extensive coverage, our approach involves selecting projects from a pool of 131 million deforked repositories from the World of Code data source. Subsequently, we analyze README.md files using OpenAI's advanced language models. Our classification focuses on software designed for scientific purposes, research-related projects, and research support software. The SciCat dataset aims to become an invaluable tool for researching science-related software, shedding light on emerging trends, prevalent practices, and challenges in the field of scientific software development. Furthermore, it includes data that can be linked to the World of Code, GitHub, and other platforms, providing a solid foundation for conducting comparative studies between scientific and non-scientific software.
Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing
Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.
SurGen: 1020 H&E-stained Whole Slide Images With Survival and Genetic Markers
Background: Cancer remains one of the leading causes of morbidity and mortality worldwide. Comprehensive datasets that combine histopathological images with genetic and survival data across various tumour sites are essential for advancing computational pathology and personalised medicine. Results: We present SurGen, a dataset comprising 1,020 H&E-stained whole slide images (WSIs) from 843 colorectal cancer cases. The dataset includes detailed annotations for key genetic mutations (KRAS, NRAS, BRAF) and mismatch repair status, as well as survival data for 426 cases. To demonstrate SurGen's practical utility, we conducted a proof-of-concept machine learning experiment predicting mismatch repair status from the WSIs, achieving a test AUROC of 0.8316. These preliminary results underscore the dataset's potential to facilitate research in biomarker discovery, prognostic modelling, and advanced machine learning applications in colorectal cancer. Conclusions: SurGen offers a valuable resource for the scientific community, enabling studies that require high-quality WSIs linked with comprehensive clinical and genetic information on colorectal cancer. Our initial findings affirm the dataset's capacity to advance diagnostic precision and foster the development of personalised treatment strategies in colorectal oncology. Data available online at https://doi.org/10.6019/S-BIAD1285.
Homogenized C. elegans Neural Activity and Connectivity Data
There is renewed interest in modeling and understanding the nervous system of the nematode Caenorhabditis elegans (C. elegans), as this small model system provides a path to bridge the gap between nervous system structure (connectivity) and function (physiology). However, existing physiology datasets, whether involving passive recording or stimulation, are in distinct formats, and connectome datasets require preprocessing before analysis can commence. Here we compile and homogenize datasets of neural activity and connectivity. Our neural activity dataset is derived from 11 C. elegans neuroimaging experiments, while our connectivity dataset is compiled from 9 connectome annotations based on 3 primary electron microscopy studies and 1 signal propagation study. Physiology datasets, collected under varying protocols, measure calcium fluorescence in labeled subsets of the worm's 300 neurons. Our preprocessing pipeline standardizes these datasets by consistently ordering labeled neurons and resampling traces to a common sampling rate, yielding recordings from approximately 900 worms and 250 uniquely labeled neurons. The connectome datasets, collected from electron microscopy reconstructions, represent the entire nervous system as a graph of connections. Our collection is accessible on HuggingFace, facilitating analysis of the structure-function relationship in biology using modern neural network architectures and enabling cross-lab and cross-animal comparisons.
IAUNet: Instance-Aware U-Net
Instance segmentation is critical in biomedical imaging to accurately distinguish individual objects like cells, which often overlap and vary in size. Recent query-based methods, where object queries guide segmentation, have shown strong performance. While U-Net has been a go-to architecture in medical image segmentation, its potential in query-based approaches remains largely unexplored. In this work, we present IAUNet, a novel query-based U-Net architecture. The core design features a full U-Net architecture, enhanced by a novel lightweight convolutional Pixel decoder, making the model more efficient and reducing the number of parameters. Additionally, we propose a Transformer decoder that refines object-specific features across multiple scales. Finally, we introduce the 2025 Revvity Full Cell Segmentation Dataset, a unique resource with detailed annotations of overlapping cell cytoplasm in brightfield images, setting a new benchmark for biomedical instance segmentation. Experiments on multiple public datasets and our own show that IAUNet outperforms most state-of-the-art fully convolutional, transformer-based, and query-based models and cell segmentation-specific models, setting a strong baseline for cell instance segmentation tasks. Code is available at https://github.com/SlavkoPrytula/IAUNet
PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts
We present PubMed 200k RCT, a new dataset based on PubMed for sequential sentence classification. The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling 2.3 million sentences. Each sentence of each abstract is labeled with their role in the abstract using one of the following classes: background, objective, method, result, or conclusion. The purpose of releasing this dataset is twofold. First, the majority of datasets for sequential short-text classification (i.e., classification of short texts that appear in sequences) are small: we hope that releasing a new large dataset will help develop more accurate algorithms for this task. Second, from an application perspective, researchers need better tools to efficiently skim through the literature. Automatically classifying each sentence in an abstract would help researchers read abstracts more efficiently, especially in fields where abstracts may be long, such as the medical field.
CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning
High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.
PAST: A multimodal single-cell foundation model for histopathology and spatial transcriptomics in cancer
While pathology foundation models have transformed cancer image analysis, they often lack integration with molecular data at single-cell resolution, limiting their utility for precision oncology. Here, we present PAST, a pan-cancer single-cell foundation model trained on 20 million paired histopathology images and single-cell transcriptomes spanning multiple tumor types and tissue contexts. By jointly encoding cellular morphology and gene expression, PAST learns unified cross-modal representations that capture both spatial and molecular heterogeneity at the cellular level. This approach enables accurate prediction of single-cell gene expression, virtual molecular staining, and multimodal survival analysis directly from routine pathology slides. Across diverse cancers and downstream tasks, PAST consistently exceeds the performance of existing approaches, demonstrating robust generalizability and scalability. Our work establishes a new paradigm for pathology foundation models, providing a versatile tool for high-resolution spatial omics, mechanistic discovery, and precision cancer research.
ChromFound: Towards A Universal Foundation Model for Single-Cell Chromatin Accessibility Data
The advent of single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) offers an innovative perspective for deciphering regulatory mechanisms by assembling a vast repository of single-cell chromatin accessibility data. While foundation models have achieved significant success in single-cell transcriptomics, there is currently no foundation model for scATAC-seq that supports zero-shot high-quality cell identification and comprehensive multi-omics analysis simultaneously. Key challenges lie in the high dimensionality and sparsity of scATAC-seq data, as well as the lack of a standardized schema for representing open chromatin regions (OCRs). Here, we present ChromFound, a foundation model tailored for scATAC-seq. ChromFound utilizes a hybrid architecture and genome-aware tokenization to effectively capture genome-wide long contexts and regulatory signals from dynamic chromatin landscapes. Pretrained on 1.97 million cells from 30 tissues and 6 disease conditions, ChromFound demonstrates broad applicability across 6 diverse tasks. Notably, it achieves robust zero-shot performance in generating universal cell representations and exhibits excellent transferability in cell type annotation and cross-omics prediction. By uncovering enhancer-gene links undetected by existing computational methods, ChromFound offers a promising framework for understanding disease risk variants in the noncoding genome.
Toward a Team of AI-made Scientists for Scientific Discovery from Gene Expression Data
Machine learning has emerged as a powerful tool for scientific discovery, enabling researchers to extract meaningful insights from complex datasets. For instance, it has facilitated the identification of disease-predictive genes from gene expression data, significantly advancing healthcare. However, the traditional process for analyzing such datasets demands substantial human effort and expertise for the data selection, processing, and analysis. To address this challenge, we introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline. TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM). These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes. Furthermore, we have curated a benchmark dataset to assess TAIS's effectiveness in gene identification, demonstrating our system's potential to significantly enhance the efficiency and scope of scientific exploration. Our findings represent a solid step towards automating scientific discovery through large language models.
SToFM: a Multi-scale Foundation Model for Spatial Transcriptomics
Spatial Transcriptomics (ST) technologies provide biologists with rich insights into single-cell biology by preserving spatial context of cells. Building foundational models for ST can significantly enhance the analysis of vast and complex data sources, unlocking new perspectives on the intricacies of biological tissues. However, modeling ST data is inherently challenging due to the need to extract multi-scale information from tissue slices containing vast numbers of cells. This process requires integrating macro-scale tissue morphology, micro-scale cellular microenvironment, and gene-scale gene expression profile. To address this challenge, we propose SToFM, a multi-scale Spatial Transcriptomics Foundation Model. SToFM first performs multi-scale information extraction on each ST slice, to construct a set of ST sub-slices that aggregate macro-, micro- and gene-scale information. Then an SE(2) Transformer is used to obtain high-quality cell representations from the sub-slices. Additionally, we construct SToCorpus-88M, the largest high-resolution spatial transcriptomics corpus for pretraining. SToFM achieves outstanding performance on a variety of downstream tasks, such as tissue region semantic segmentation and cell type annotation, demonstrating its comprehensive understanding of ST data through capturing and integrating multi-scale information.
STAGED: A Multi-Agent Neural Network for Learning Cellular Interaction Dynamics
The advent of single-cell technology has significantly improved our understanding of cellular states and subpopulations in various tissues under normal and diseased conditions by employing data-driven approaches such as clustering and trajectory inference. However, these methods consider cells as independent data points of population distributions. With spatial transcriptomics, we can represent cellular organization, along with dynamic cell-cell interactions that lead to changes in cell state. Still, key computational advances are necessary to enable the data-driven learning of such complex interactive cellular dynamics. While agent-based modeling (ABM) provides a powerful framework, traditional approaches rely on handcrafted rules derived from domain knowledge rather than data-driven approaches. To address this, we introduce Spatio Temporal Agent-Based Graph Evolution Dynamics(STAGED) integrating ABM with deep learning to model intercellular communication, and its effect on the intracellular gene regulatory network. Using graph ODE networks (GDEs) with shared weights per cell type, our approach represents genes as vertices and interactions as directed edges, dynamically learning their strengths through a designed attention mechanism. Trained to match continuous trajectories of simulated as well as inferred trajectories from spatial transcriptomics data, the model captures both intercellular and intracellular interactions, enabling a more adaptive and accurate representation of cellular dynamics.
EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation
We release the EARS (Expressive Anechoic Recordings of Speech) dataset, a high-quality speech dataset comprising 107 speakers from diverse backgrounds, totaling in 100 hours of clean, anechoic speech data. The dataset covers a large range of different speaking styles, including emotional speech, different reading styles, non-verbal sounds, and conversational freeform speech. We benchmark various methods for speech enhancement and dereverberation on the dataset and evaluate their performance through a set of instrumental metrics. In addition, we conduct a listening test with 20 participants for the speech enhancement task, where a generative method is preferred. We introduce a blind test set that allows for automatic online evaluation of uploaded data. Dataset download links and automatic evaluation server can be found online.
Generative Distribution Embeddings
Many real-world problems require reasoning across multiple scales, demanding models which operate not on single data points, but on entire distributions. We introduce generative distribution embeddings (GDE), a framework that lifts autoencoders to the space of distributions. In GDEs, an encoder acts on sets of samples, and the decoder is replaced by a generator which aims to match the input distribution. This framework enables learning representations of distributions by coupling conditional generative models with encoder networks which satisfy a criterion we call distributional invariance. We show that GDEs learn predictive sufficient statistics embedded in the Wasserstein space, such that latent GDE distances approximately recover the W_2 distance, and latent interpolation approximately recovers optimal transport trajectories for Gaussian and Gaussian mixture distributions. We systematically benchmark GDEs against existing approaches on synthetic datasets, demonstrating consistently stronger performance. We then apply GDEs to six key problems in computational biology: learning representations of cell populations from lineage-tracing data (150K cells), predicting perturbation effects on single-cell transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell images), modeling tissue-specific DNA methylation patterns (253M sequences), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of viral protein sequences (1M sequences).
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
GenoTEX: A Benchmark for Automated Gene Expression Data Analysis in Alignment with Bioinformaticians
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automated analysis of gene expression data. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, encompassing dataset selection, preprocessing, and statistical analysis, in a pipeline that follows computational genomics standards. The benchmark includes expert-curated annotations from bioinformaticians to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgent, a team of LLM-based agents that adopt a multi-step programming workflow with flexible self-correction, to collaboratively analyze gene expression datasets. Our experiments demonstrate the potential of LLM-based methods in analyzing genomic data, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing automated methods for gene expression data analysis. The benchmark is available at https://github.com/Liu-Hy/GenoTex.
A ground-truth dataset of real security patches
Training machine learning approaches for vulnerability identification and producing reliable tools to assist developers in implementing quality software -- free of vulnerabilities -- is challenging due to the lack of large datasets and real data. Researchers have been looking at these issues and building datasets. However, these datasets usually miss natural language artifacts and programming language diversity. We scraped the entire CVE details database for GitHub references and augmented the data with 3 security-related datasets. We used the data to create a ground-truth dataset of natural language artifacts (such as commit messages, commits comments, and summaries), meta-data and code changes. Our dataset integrates a total of 8057 security-relevant commits -- the equivalent to 5942 security patches -- from 1339 different projects spanning 146 different types of vulnerabilities and 20 languages. A dataset of 110k non-security-related commits is also provided. Data and scripts are all available on GitHub. Data is stored in a .CSV file. Codebases can be downloaded using our scripts. Our dataset is a valuable asset to answer research questions on different topics such as the identification of security-relevant information using NLP models; software engineering and security best practices; and, vulnerability detection and patching; and, security program analysis.
LAION-5B: An open large-scale dataset for training next generation image-text models
Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/
FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
Unlocking Science: Novel Dataset and Benchmark for Cross-Modality Scientific Information Extraction
Extracting key information from scientific papers has the potential to help researchers work more efficiently and accelerate the pace of scientific progress. Over the last few years, research on Scientific Information Extraction (SciIE) witnessed the release of several new systems and benchmarks. However, existing paper-focused datasets mostly focus only on specific parts of a manuscript (e.g., abstracts) and are single-modality (i.e., text- or table-only), due to complex processing and expensive annotations. Moreover, core information can be present in either text or tables or across both. To close this gap in data availability and enable cross-modality IE, while alleviating labeling costs, we propose a semi-supervised pipeline for annotating entities in text, as well as entities and relations in tables, in an iterative procedure. Based on this pipeline, we release novel resources for the scientific community, including a high-quality benchmark, a large-scale corpus, and a semi-supervised annotation pipeline. We further report the performance of state-of-the-art IE models on the proposed benchmark dataset, as a baseline. Lastly, we explore the potential capability of large language models such as ChatGPT for the current task. Our new dataset, results, and analysis validate the effectiveness and efficiency of our semi-supervised pipeline, and we discuss its remaining limitations.
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges
Estimating single-cell responses across various perturbations facilitates the identification of key genes and enhances drug screening, significantly boosting experimental efficiency. However, single-cell sequencing is a destructive process, making it impossible to capture the same cell's phenotype before and after perturbation. Consequently, data collected under perturbed and unperturbed conditions are inherently unpaired. Existing methods either attempt to forcibly pair unpaired data using random sampling, or neglect the inherent relationship between unperturbed and perturbed cells during the modeling. In this work, we propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions, effectively addressing the challenge of unpaired data. We further interpret this framework as a form of data augmentation. We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way, and further incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles. Moreover, gene expression under the same perturbation often varies significantly across cells, frequently exhibiting a bimodal distribution that reflects intrinsic heterogeneity. To capture this, we introduce a more suitable evaluation metric. We propose Unlasting, dual conditional diffusion models that overcome the problem of unpaired single-cell perturbation data and strengthen the model's insight into perturbations under the guidance of the GRN, with a dedicated mask model designed to improve generation quality by predicting silent genes. In addition, we introduce a biologically grounded evaluation metric that better reflects the inherent heterogeneity in single-cell responses.
Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning
Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.
Gene-DML: Dual-Pathway Multi-Level Discrimination for Gene Expression Prediction from Histopathology Images
Accurately predicting gene expression from histopathology images offers a scalable and non-invasive approach to molecular profiling, with significant implications for precision medicine and computational pathology. However, existing methods often underutilize the cross-modal representation alignment between histopathology images and gene expression profiles across multiple representational levels, thereby limiting their prediction performance. To address this, we propose Gene-DML, a unified framework that structures latent space through Dual-pathway Multi-Level discrimination to enhance correspondence between morphological and transcriptional modalities. The multi-scale instance-level discrimination pathway aligns hierarchical histopathology representations extracted at local, neighbor, and global levels with gene expression profiles, capturing scale-aware morphological-transcriptional relationships. In parallel, the cross-level instance-group discrimination pathway enforces structural consistency between individual (image/gene) instances and modality-crossed (gene/image, respectively) groups, strengthening the alignment across modalities. By jointly modelling fine-grained and structural-level discrimination, Gene-DML is able to learn robust cross-modal representations, enhancing both predictive accuracy and generalization across diverse biological contexts. Extensive experiments on public spatial transcriptomics datasets demonstrate that Gene-DML achieves state-of-the-art performance in gene expression prediction. The code and checkpoints will be released soon.
MS2: Multi-Document Summarization of Medical Studies
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our system's generated summaries. Data and models are available at https://github.com/allenai/ms2
PathVQA: 30000+ Questions for Medical Visual Question Answering
Is it possible to develop an "AI Pathologist" to pass the board-certified examination of the American Board of Pathology? To achieve this goal, the first step is to create a visual question answering (VQA) dataset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Our work makes the first attempt to build such a dataset. Different from creating general-domain VQA datasets where the images are widely accessible and there are many crowdsourcing workers available and capable of generating question-answer pairs, developing a medical VQA dataset is much more challenging. First, due to privacy concerns, pathology images are usually not publicly available. Second, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. To address these challenges, we resort to pathology textbooks and online digital libraries. We develop a semi-automated pipeline to extract pathology images and captions from textbooks and generate question-answer pairs from captions using natural language processing. We collect 32,799 open-ended questions from 4,998 pathology images where each question is manually checked to ensure correctness. To our best knowledge, this is the first dataset for pathology VQA. Our dataset will be released publicly to promote research in medical VQA.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
NCL-SM: A Fully Annotated Dataset of Images from Human Skeletal Muscle Biopsies
Single cell analysis of human skeletal muscle (SM) tissue cross-sections is a fundamental tool for understanding many neuromuscular disorders. For this analysis to be reliable and reproducible, identification of individual fibres within microscopy images (segmentation) of SM tissue should be automatic and precise. Biomedical scientists in this field currently rely on custom tools and general machine learning (ML) models, both followed by labour intensive and subjective manual interventions to fine-tune segmentation. We believe that fully automated, precise, reproducible segmentation is possible by training ML models. However, in this important biomedical domain, there are currently no good quality, publicly available annotated imaging datasets available for ML model training. In this paper we release NCL-SM: a high quality bioimaging dataset of 46 human SM tissue cross-sections from both healthy control subjects and from patients with genetically diagnosed muscle pathology. These images include > 50k manually segmented muscle fibres (myofibres). In addition we also curated high quality myofibre segmentations, annotating reasons for rejecting low quality myofibres and low quality regions in SM tissue images, making these annotations completely ready for downstream analysis. This, we believe, will pave the way for development of a fully automatic pipeline that identifies individual myofibres within images of tissue sections and, in particular, also classifies individual myofibres that are fit for further analysis.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research
Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.
OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents
Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train vision and language models of 9 and 80 billion parameters named IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.
SPEC5G: A Dataset for 5G Cellular Network Protocol Analysis
5G is the 5th generation cellular network protocol. It is the state-of-the-art global wireless standard that enables an advanced kind of network designed to connect virtually everyone and everything with increased speed and reduced latency. Therefore, its development, analysis, and security are critical. However, all approaches to the 5G protocol development and security analysis, e.g., property extraction, protocol summarization, and semantic analysis of the protocol specifications and implementations are completely manual. To reduce such manual effort, in this paper, we curate SPEC5G the first-ever public 5G dataset for NLP research. The dataset contains 3,547,586 sentences with 134M words, from 13094 cellular network specifications and 13 online websites. By leveraging large-scale pre-trained language models that have achieved state-of-the-art results on NLP tasks, we use this dataset for security-related text classification and summarization. Security-related text classification can be used to extract relevant security-related properties for protocol testing. On the other hand, summarization can help developers and practitioners understand the high level of the protocol, which is itself a daunting task. Our results show the value of our 5G-centric dataset in 5G protocol analysis automation. We believe that SPEC5G will enable a new research direction into automatic analyses for the 5G cellular network protocol and numerous related downstream tasks. Our data and code are publicly available.
Cell Painting Gallery: an open resource for image-based profiling
Image-based or morphological profiling is a rapidly expanding field wherein cells are "profiled" by extracting hundreds to thousands of unbiased, quantitative features from images of cells that have been perturbed by genetic or chemical perturbations. The Cell Painting assay is the most popular imaged-based profiling assay wherein six small-molecule dyes label eight cellular compartments and thousands of measurements are made, describing quantitative traits such as size, shape, intensity, and texture within the nucleus, cytoplasm, and whole cell (Cimini et al., 2023). We have created the Cell Painting Gallery, a publicly available collection of Cell Painting datasets, with granular dataset descriptions and access instructions. It is hosted by AWS on the Registry of Open Data (RODA). As of January 2024, the Cell Painting Gallery holds 656 terabytes (TB) of image and associated numerical data. It includes the largest publicly available Cell Painting dataset, in terms of perturbations tested (Joint Undertaking for Morphological Profiling or JUMP (Chandrasekaran et al., 2023)), along with many other canonical datasets using Cell Painting, close derivatives of Cell Painting (such as LipocyteProfiler (Laber et al., 2023) and Pooled Cell Painting (Ramezani et al., 2023)).
METAGENE-1: Metagenomic Foundation Model for Pandemic Monitoring
We pretrain METAGENE-1, a 7-billion-parameter autoregressive transformer model, which we refer to as a metagenomic foundation model, on a novel corpus of diverse metagenomic DNA and RNA sequences comprising over 1.5 trillion base pairs. This dataset is sourced from a large collection of human wastewater samples, processed and sequenced using deep metagenomic (next-generation) sequencing methods. Unlike genomic models that focus on individual genomes or curated sets of specific species, the aim of METAGENE-1 is to capture the full distribution of genomic information present within this wastewater, to aid in tasks relevant to pandemic monitoring and pathogen detection. We carry out byte-pair encoding (BPE) tokenization on our dataset, tailored for metagenomic sequences, and then pretrain our model. In this paper, we first detail the pretraining dataset, tokenization strategy, and model architecture, highlighting the considerations and design choices that enable the effective modeling of metagenomic data. We then show results of pretraining this model on our metagenomic dataset, providing details about our losses, system metrics, and training stability over the course of pretraining. Finally, we demonstrate the performance of METAGENE-1, which achieves state-of-the-art results on a set of genomic benchmarks and new evaluations focused on human-pathogen detection and genomic sequence embedding, showcasing its potential for public health applications in pandemic monitoring, biosurveillance, and early detection of emerging health threats.
PixCell: A generative foundation model for digital histopathology images
The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.
Common Corpus: The Largest Collection of Ethical Data for LLM Pre-Training
Large Language Models (LLMs) are pre-trained on large amounts of data from different sources and domains. These data most often contain trillions of tokens with large portions of copyrighted or proprietary content, which hinders the usage of such models under AI legislation. This raises the need for truly open pre-training data that is compliant with the data security regulations. In this paper, we introduce Common Corpus, the largest open dataset for language model pre-training. The data assembled in Common Corpus are either uncopyrighted or under permissible licenses and amount to about two trillion tokens. The dataset contains a wide variety of languages, ranging from the main European languages to low-resource ones rarely present in pre-training datasets; in addition, it includes a large portion of code data. The diversity of data sources in terms of covered domains and time periods opens up the paths for both research and entrepreneurial needs in diverse areas of knowledge. In this technical report, we present the detailed provenance of data assembling and the details of dataset filtering and curation. Being already used by such industry leaders as Anthropic and multiple LLM training projects, we believe that Common Corpus will become a critical infrastructure for open science research in LLMs.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks.
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Recent years have seen the advent of molecular simulation datasets that are orders of magnitude larger and more diverse. These new datasets differ substantially in four aspects of complexity: 1. Chemical diversity (number of different elements), 2. system size (number of atoms per sample), 3. dataset size (number of data samples), and 4. domain shift (similarity of the training and test set). Despite these large differences, benchmarks on small and narrow datasets remain the predominant method of demonstrating progress in graph neural networks (GNNs) for molecular simulation, likely due to cheaper training compute requirements. This raises the question -- does GNN progress on small and narrow datasets translate to these more complex datasets? This work investigates this question by first developing the GemNet-OC model based on the large Open Catalyst 2020 (OC20) dataset. GemNet-OC outperforms the previous state-of-the-art on OC20 by 16% while reducing training time by a factor of 10. We then compare the impact of 18 model components and hyperparameter choices on performance in multiple datasets. We find that the resulting model would be drastically different depending on the dataset used for making model choices. To isolate the source of this discrepancy we study six subsets of the OC20 dataset that individually test each of the above-mentioned four dataset aspects. We find that results on the OC-2M subset correlate well with the full OC20 dataset while being substantially cheaper to train on. Our findings challenge the common practice of developing GNNs solely on small datasets, but highlight ways of achieving fast development cycles and generalizable results via moderately-sized, representative datasets such as OC-2M and efficient models such as GemNet-OC. Our code and pretrained model weights are open-sourced.
BixBench: a Comprehensive Benchmark for LLM-based Agents in Computational Biology
Large Language Models (LLMs) and LLM-based agents show great promise in accelerating scientific research. Existing benchmarks for measuring this potential and guiding future development continue to evolve from pure recall and rote knowledge tasks, towards more practical work such as literature review and experimental planning. Bioinformatics is a domain where fully autonomous AI-driven discovery may be near, but no extensive benchmarks for measuring progress have been introduced to date. We therefore present the Bioinformatics Benchmark (BixBench), a dataset comprising over 50 real-world scenarios of practical biological data analysis with nearly 300 associated open-answer questions designed to measure the ability of LLM-based agents to explore biological datasets, perform long, multi-step analytical trajectories, and interpret the nuanced results of those analyses. We evaluate the performance of two frontier LLMs (GPT-4o and Claude 3.5 Sonnet) using a custom agent framework we open source. We find that even the latest frontier models only achieve 17% accuracy in the open-answer regime, and no better than random in a multiple-choice setting. By exposing the current limitations of frontier models, we hope BixBench can spur the development of agents capable of conducting rigorous bioinformatic analysis and accelerate scientific discovery.
Real-Time Cell Sorting with Scalable In Situ FPGA-Accelerated Deep Learning
Precise cell classification is essential in biomedical diagnostics and therapeutic monitoring, particularly for identifying diverse cell types involved in various diseases. Traditional cell classification methods such as flow cytometry depend on molecular labeling which is often costly, time-intensive, and can alter cell integrity. To overcome these limitations, we present a label-free machine learning framework for cell classification, designed for real-time sorting applications using bright-field microscopy images. This approach leverages a teacher-student model architecture enhanced by knowledge distillation, achieving high efficiency and scalability across different cell types. Demonstrated through a use case of classifying lymphocyte subsets, our framework accurately classifies T4, T8, and B cell types with a dataset of 80,000 preprocessed images, accessible via an open-source Python package for easy adaptation. Our teacher model attained 98\% accuracy in differentiating T4 cells from B cells and 93\% accuracy in zero-shot classification between T8 and B cells. Remarkably, our student model operates with only 0.02\% of the teacher model's parameters, enabling field-programmable gate array (FPGA) deployment. Our FPGA-accelerated student model achieves an ultra-low inference latency of just 14.5~μs and a complete cell detection-to-sorting trigger time of 24.7~μs, delivering 12x and 40x improvements over the previous state-of-the-art real-time cell analysis algorithm in inference and total latency, respectively, while preserving accuracy comparable to the teacher model. This framework provides a scalable, cost-effective solution for lymphocyte classification, as well as a new SOTA real-time cell sorting implementation for rapid identification of subsets using in situ deep learning on off-the-shelf computing hardware.
Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs
As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available.
Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
Prototype-based Dataset Comparison
Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSim
MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning
Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.
Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles
We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers, and all summaries are provided in both of the written variants of Norwegian -- Bokm{\aa}l and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model-generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities
NuClick: A Deep Learning Framework for Interactive Segmentation of Microscopy Images
Object segmentation is an important step in the workflow of computational pathology. Deep learning based models generally require large amount of labeled data for precise and reliable prediction. However, collecting labeled data is expensive because it often requires expert knowledge, particularly in medical imaging domain where labels are the result of a time-consuming analysis made by one or more human experts. As nuclei, cells and glands are fundamental objects for downstream analysis in computational pathology/cytology, in this paper we propose a simple CNN-based approach to speed up collecting annotations for these objects which requires minimum interaction from the annotator. We show that for nuclei and cells in histology and cytology images, one click inside each object is enough for NuClick to yield a precise annotation. For multicellular structures such as glands, we propose a novel approach to provide the NuClick with a squiggle as a guiding signal, enabling it to segment the glandular boundaries. These supervisory signals are fed to the network as auxiliary inputs along with RGB channels. With detailed experiments, we show that NuClick is adaptable to the object scale, robust against variations in the user input, adaptable to new domains, and delivers reliable annotations. An instance segmentation model trained on masks generated by NuClick achieved the first rank in LYON19 challenge. As exemplar outputs of our framework, we are releasing two datasets: 1) a dataset of lymphocyte annotations within IHC images, and 2) a dataset of segmented WBCs in blood smear images.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.
Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset
Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.
L+M-24: Building a Dataset for Language + Molecules @ ACL 2024
Language-molecule models have emerged as an exciting direction for molecular discovery and understanding. However, training these models is challenging due to the scarcity of molecule-language pair datasets. At this point, datasets have been released which are 1) small and scraped from existing databases, 2) large but noisy and constructed by performing entity linking on the scientific literature, and 3) built by converting property prediction datasets to natural language using templates. In this document, we detail the L+M-24 dataset, which has been created for the Language + Molecules Workshop shared task at ACL 2024. In particular, L+M-24 is designed to focus on three key benefits of natural language in molecule design: compositionality, functionality, and abstraction.
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
Can Large Language Models Replace Data Scientists in Clinical Research?
Data science plays a critical role in clinical research, but it requires professionals with expertise in coding and medical data analysis. Large language models (LLMs) have shown great potential in supporting medical tasks and performing well in general coding tests. However, these tests do not assess LLMs' ability to handle data science tasks in medicine, nor do they explore their practical utility in clinical research. To address this, we developed a dataset consisting of 293 real-world data science coding tasks, based on 39 published clinical studies, covering 128 tasks in Python and 165 tasks in R. This dataset simulates realistic clinical research scenarios using patient data. Our findings reveal that cutting-edge LLMs struggle to generate perfect solutions, frequently failing to follow input instructions, understand target data, and adhere to standard analysis practices. Consequently, LLMs are not yet ready to fully automate data science tasks. We benchmarked advanced adaptation methods and found two to be particularly effective: chain-of-thought prompting, which provides a step-by-step plan for data analysis, which led to a 60% improvement in code accuracy; and self-reflection, enabling LLMs to iteratively refine their code, yielding a 38% accuracy improvement. Building on these insights, we developed a platform that integrates LLMs into the data science workflow for medical professionals. In a user study with five medical doctors, we found that while LLMs cannot fully automate coding tasks, they significantly streamline the programming process. We found that 80% of their submitted code solutions were incorporated from LLM-generated code, with up to 96% reuse in some cases. Our analysis highlights the potential of LLMs, when integrated into expert workflows, to enhance data science efficiency in clinical research.
Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach
The sparsity of labelled data is an obstacle to the development of Relation Extraction models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the natural-products literature, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler, or GME-sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the input abstracts text and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open Large Language Models (Vicuna-13B) as synthetic data generator and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (f1-score=59.0) BioGPT-Large model for end-to-end RE of natural-products relationships along with all the generated synthetic data and the evaluation dataset. See more details at https://github.com/idiap/abroad-re.
A multi-centre polyp detection and segmentation dataset for generalisability assessment
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Our dataset can be downloaded from https://doi.org/10.7303/syn26376615.
RxRx3-core: Benchmarking drug-target interactions in High-Content Microscopy
High Content Screening (HCS) microscopy datasets have transformed the ability to profile cellular responses to genetic and chemical perturbations, enabling cell-based inference of drug-target interactions (DTI). However, the adoption of representation learning methods for HCS data has been hindered by the lack of accessible datasets and robust benchmarks. To address this gap, we present RxRx3-core, a curated and compressed subset of the RxRx3 dataset, and an associated DTI benchmarking task. At just 18GB, RxRx3-core significantly reduces the size barrier associated with large-scale HCS datasets while preserving critical data necessary for benchmarking representation learning models against a zero-shot DTI prediction task. RxRx3-core includes 222,601 microscopy images spanning 736 CRISPR knockouts and 1,674 compounds at 8 concentrations. RxRx3-core is available on HuggingFace and Polaris, along with pre-trained embeddings and benchmarking code, ensuring accessibility for the research community. By providing a compact dataset and robust benchmarks, we aim to accelerate innovation in representation learning methods for HCS data and support the discovery of novel biological insights.
Audio-Language Datasets of Scenes and Events: A Survey
Audio-language models (ALMs) process sounds to provide a linguistic description of sound-producing events and scenes. Recent advances in computing power and dataset creation have led to significant progress in this domain. This paper surveys existing datasets used for training audio-language models, emphasizing the recent trend towards using large, diverse datasets to enhance model performance. Key sources of these datasets include the Freesound platform and AudioSet that have contributed to the field's rapid growth. Although prior surveys primarily address techniques and training details, this survey categorizes and evaluates a wide array of datasets, addressing their origins, characteristics, and use cases. It also performs a data leak analysis to ensure dataset integrity and mitigate bias between datasets. This survey was conducted by analyzing research papers up to and including December 2023, and does not contain any papers after that period.
Comprehensive Benchmarking of YOLOv11 Architectures for Scalable and Granular Peripheral Blood Cell Detection
Manual peripheral blood smear (PBS) analysis is labor intensive and subjective. While deep learning offers a promising alternative, a systematic evaluation of state of the art models such as YOLOv11 for fine grained PBS detection is still lacking. In this work, we make two key contributions. First, we curate a large scale annotated dataset for blood cell detection and classification, comprising 16,891 images across 12 peripheral blood cell (PBC) classes, along with the red blood cell class, all carefully re annotated for object detection tasks. In total, the dataset contains 298,850 annotated cells. Second, we leverage this dataset to conduct a comprehensive evaluation of five YOLOv11 variants (ranging from Nano to XLarge). These models are rigorously benchmarked under two data splitting strategies (70:20:10 and 80:10:10) and systematically assessed using multiple performance criteria, including mean Average Precision (mAP), precision, recall, F1 score, and computational efficiency. Our experiments show that the YOLOv11 Medium variant achieves the best trade off, reaching a [email protected] of 0.934 under the 8:1:1 split. Larger models (Large and XLarge) provide only marginal accuracy gains at substantially higher computational cost. Moreover, the 8:1:1 split consistently outperforms the 7:2:1 split across all models. These findings highlight YOLOv11, particularly the Medium variant, as a highly effective framework for automated, fine grained PBS detection. Beyond benchmarking, our publicly released dataset (github.com/Mohamad-AbouAli/OI-PBC-Dataset) offers a valuable resource to advance research on blood cell detection and classification in hematology.
SciNews: From Scholarly Complexities to Public Narratives -- A Dataset for Scientific News Report Generation
Scientific news reports serve as a bridge, adeptly translating complex research articles into reports that resonate with the broader public. The automated generation of such narratives enhances the accessibility of scholarly insights. In this paper, we present a new corpus to facilitate this paradigm development. Our corpus comprises a parallel compilation of academic publications and their corresponding scientific news reports across nine disciplines. To demonstrate the utility and reliability of our dataset, we conduct an extensive analysis, highlighting the divergences in readability and brevity between scientific news narratives and academic manuscripts. We benchmark our dataset employing state-of-the-art text generation models. The evaluation process involves both automatic and human evaluation, which lays the groundwork for future explorations into the automated generation of scientific news reports. The dataset and code related to this work are available at https://dongqi.me/projects/SciNews.
DiaTrend: A dataset from advanced diabetes technology to enable development of novel analytic solutions
Objective digital data is scarce yet needed in many domains to enable research that can transform the standard of healthcare. While data from consumer-grade wearables and smartphones is more accessible, there is critical need for similar data from clinical-grade devices used by patients with a diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage for unique research and development within this field and beyond. However, the scarcity of open-source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant problems and accelerate development of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions that can reduce the disease burden for people living with diabetes and increase knowledge on chronic condition management in outpatient settings.
Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning
Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources.
Biomed-Enriched: A Biomedical Dataset Enriched with LLMs for Pretraining and Extracting Rare and Hidden Content
We introduce Biomed-Enriched, a biomedical text dataset constructed from PubMed via a two-stage annotation process. In the first stage, a large language model annotates 400K paragraphs from PubMed scientific articles, assigning scores for their type (review, study, clinical case, other), domain (clinical, biomedical, other), and educational quality. The educational quality score (rated 1 to 5) estimates how useful a paragraph is for college-level learning. These annotations are then used to fine-tune a small language model, which propagates the labels across the full PMC-OA corpus. The resulting metadata allows us to extract refined subsets, including 2M clinical case paragraphs with over 450K high-quality ones from articles with commercial-use licenses, and to construct several variants via quality filtering and domain upsampling. Clinical text is typically difficult to access due to privacy constraints, as hospital records cannot be publicly shared. Hence, our dataset provides an alternative large-scale, openly available collection of clinical cases from PubMed, making it a valuable resource for biomedical and clinical NLP. Preliminary continual-pretraining experiments with OLMo2 suggest these curated subsets enable targeted improvements, with clinical upsampling boosting performance by ~5% on MMLU ProfMed and educational quality filtering improving MedQA and MedMCQA by ~1%. Combinations of these techniques led to faster convergence, reaching same performance with a third of training tokens, indicating potential for more efficient and effective biomedical pretraining strategies.
UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection
The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.
FSD50K: An Open Dataset of Human-Labeled Sound Events
Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on over 2M tracks from YouTube videos and encompassing over 500 sound classes. However, AudioSet is not an open dataset as its official release consists of pre-computed audio features. Downloading the original audio tracks can be problematic due to YouTube videos gradually disappearing and usage rights issues. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research.
GenCodeSearchNet: A Benchmark Test Suite for Evaluating Generalization in Programming Language Understanding
Language models can serve as a valuable tool for software developers to increase productivity. Large generative models can be used for code generation and code completion, while smaller encoder-only models are capable of performing code search tasks using natural language queries.These capabilities are heavily influenced by the quality and diversity of the available training data. Source code datasets used for training usually focus on the most popular languages and testing is mostly conducted on the same distributions, often overlooking low-resource programming languages. Motivated by the NLP generalization taxonomy proposed by Hupkes et.\,al., we propose a new benchmark dataset called GenCodeSearchNet (GeCS) which builds upon existing natural language code search datasets to systemically evaluate the programming language understanding generalization capabilities of language models. As part of the full dataset, we introduce a new, manually curated subset StatCodeSearch that focuses on R, a popular but so far underrepresented programming language that is often used by researchers outside the field of computer science. For evaluation and comparison, we collect several baseline results using fine-tuned BERT-style models and GPT-style large language models in a zero-shot setting.
BeepBank-500: A Synthetic Earcon Mini-Corpus for UI Sound Research and Psychoacoustics Research
We introduce BeepBank-500, a compact, fully synthetic earcon/alert dataset (300-500 clips) designed for rapid, rights-clean experimentation in human-computer interaction and audio machine learning. Each clip is generated from a parametric recipe controlling waveform family (sine, square, triangle, FM), fundamental frequency, duration, amplitude envelope, amplitude modulation (AM), and lightweight Schroeder-style reverberation. We use three reverberation settings: dry, and two synthetic rooms denoted 'rir small' ('small') and 'rir medium' ('medium') throughout the paper and in the metadata. We release mono 48 kHz WAV audio (16-bit), a rich metadata table (signal/spectral features), and tiny reproducible baselines for (i) waveform-family classification and (ii) f0 regression on single tones. The corpus targets tasks such as earcon classification, timbre analyses, and onset detection, with clearly stated licensing and limitations. Audio is dedicated to the public domain via CC0-1.0; code is under MIT. Data DOI: https://doi.org/10.5281/zenodo.17172015. Code: https://github.com/mandip42/earcons-mini-500.
WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
We present a dataset of large-scale indoor spaces that provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. The dataset covers over 6,000m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360{\deg} equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces. The dataset is available here: http://3Dsemantics.stanford.edu/
Extending the WILDS Benchmark for Unsupervised Adaptation
Machine learning systems deployed in the wild are often trained on a source distribution but deployed on a different target distribution. Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well. However, existing distribution shift benchmarks with unlabeled data do not reflect the breadth of scenarios that arise in real-world applications. In this work, we present the WILDS 2.0 update, which extends 8 of the 10 datasets in the WILDS benchmark of distribution shifts to include curated unlabeled data that would be realistically obtainable in deployment. These datasets span a wide range of applications (from histology to wildlife conservation), tasks (classification, regression, and detection), and modalities (photos, satellite images, microscope slides, text, molecular graphs). The update maintains consistency with the original WILDS benchmark by using identical labeled training, validation, and test sets, as well as the evaluation metrics. On these datasets, we systematically benchmark state-of-the-art methods that leverage unlabeled data, including domain-invariant, self-training, and self-supervised methods, and show that their success on WILDS is limited. To facilitate method development and evaluation, we provide an open-source package that automates data loading and contains all of the model architectures and methods used in this paper. Code and leaderboards are available at https://wilds.stanford.edu.
"ScatSpotter" 2024 -- A Distributed Dog Poop Detection Dataset
We introduce a new -- currently 42 gigabyte -- ``living'' dataset of phone images of dog feces, annotated with manually drawn or AI-assisted polygon labels. There are 6k full resolution images and 4k detailed polygon annotations. The collection and annotation of images started in late 2020 and the dataset grows by roughly 1GB a month. We train VIT and MaskRCNN baseline models to explore the difficulty of the dataset. The best model achieves a pixelwise average precision of 0.858 on a 691-image validation set and 0.847 on a small independently captured 30-image contributor test set. The most recent snapshot of dataset is made publicly available through three different distribution methods: one centralized (Girder) and two decentralized (IPFS and BitTorrent). We study of the trade-offs between distribution methods and discuss the feasibility of each with respect to reliably sharing open scientific data. The code to reproduce the experiments is hosted on GitHub, and the data is published under the Creative Commons Attribution 4.0 International license. Model weights are made publicly available with the dataset. Experimental hardware, time, energy, and emissions are quantified.
AxCell: Automatic Extraction of Results from Machine Learning Papers
Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.
Lung and Colon Cancer Histopathological Image Dataset (LC25000)
The field of Machine Learning, a subset of Artificial Intelligence, has led to remarkable advancements in many areas, including medicine. Machine Learning algorithms require large datasets to train computer models successfully. Although there are medical image datasets available, more image datasets are needed from a variety of medical entities, especially cancer pathology. Even more scarce are ML-ready image datasets. To address this need, we created an image dataset (LC25000) with 25,000 color images in 5 classes. Each class contains 5,000 images of the following histologic entities: colon adenocarcinoma, benign colonic tissue, lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. All images are de-identified, HIPAA compliant, validated, and freely available for download to AI researchers.
Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change
Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.
Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo
The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA
EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and Capacity Estimation
Electric vehicles (EVs) play an important role in reducing carbon emissions. As EV adoption accelerates, safety issues caused by EV batteries have become an important research topic. In order to benchmark and develop data-driven methods for this task, we introduce a large and comprehensive dataset of EV batteries. Our dataset includes charging records collected from hundreds of EVs from three manufacturers over several years. Our dataset is the first large-scale public dataset on real-world battery data, as existing data either include only several vehicles or is collected in the lab environment. Meanwhile, our dataset features two types of labels, corresponding to two key tasks - battery health estimation and battery capacity estimation. In addition to demonstrating how existing deep learning algorithms can be applied to this task, we further develop an algorithm that exploits the data structure of battery systems. Our algorithm achieves better results and shows that a customized method can improve model performances. We hope that this public dataset provides valuable resources for researchers, policymakers, and industry professionals to better understand the dynamics of EV battery aging and support the transition toward a sustainable transportation system.
Datasets: A Community Library for Natural Language Processing
The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.
SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents
Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.
