Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Multimessenger Strategy for Downselecting the Orientations of Galactic Close White Dwarf Binaries
The planned space-based gravitational wave detector, LISA, will provide a fundamentally new means of studying the orbital alignment of close white dwarf binaries. However, due to the inherent symmetry of their gravitational wave signals, a fourfold degeneracy arises in the transverse projections of their angular momentum vectors. In this paper, we demonstrate that by incorporating timing information from electromagnetic observations, such as radial velocity modulations and light curves, this degeneracy can be reduced to twofold.
Improving Convergence and Generalization Using Parameter Symmetries
In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Group Equivariant Fourier Neural Operators for Partial Differential Equations
We consider solving partial differential equations (PDEs) with Fourier neural operators (FNOs), which operate in the frequency domain. Since the laws of physics do not depend on the coordinate system used to describe them, it is desirable to encode such symmetries in the neural operator architecture for better performance and easier learning. While encoding symmetries in the physical domain using group theory has been studied extensively, how to capture symmetries in the frequency domain is under-explored. In this work, we extend group convolutions to the frequency domain and design Fourier layers that are equivariant to rotations, translations, and reflections by leveraging the equivariance property of the Fourier transform. The resulting G-FNO architecture generalizes well across input resolutions and performs well in settings with varying levels of symmetry. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).
Spatial-Aware Latent Initialization for Controllable Image Generation
Recently, text-to-image diffusion models have demonstrated impressive ability to generate high-quality images conditioned on the textual input. However, these models struggle to accurately adhere to textual instructions regarding spatial layout information. While previous research has primarily focused on aligning cross-attention maps with layout conditions, they overlook the impact of the initialization noise on the layout guidance. To achieve better layout control, we propose leveraging a spatial-aware initialization noise during the denoising process. Specifically, we find that the inverted reference image with finite inversion steps contains valuable spatial awareness regarding the object's position, resulting in similar layouts in the generated images. Based on this observation, we develop an open-vocabulary framework to customize a spatial-aware initialization noise for each layout condition. Without modifying other modules except the initialization noise, our approach can be seamlessly integrated as a plug-and-play module within other training-free layout guidance frameworks. We evaluate our approach quantitatively and qualitatively on the available Stable Diffusion model and COCO dataset. Equipped with the spatial-aware latent initialization, our method significantly improves the effectiveness of layout guidance while preserving high-quality content.
Contrastive Diffusion Guidance for Spatial Inverse Problems
We consider the inverse problem of reconstructing the spatial layout of a place, a home floorplan for example, from a user`s movements inside that layout. Direct inversion is ill-posed since many floorplans can explain the same movement trajectories. We adopt a diffusion-based posterior sampler to generate layouts consistent with the measurements. While active research is in progress on generative inverse solvers, we find that the forward operator in our problem poses new challenges. The path-planning process inside a floorplan is a non-invertible, non-differentiable function, and causes instability while optimizing using the likelihood score. We break-away from existing approaches and reformulate the likelihood score in a smoother embedding space. The embedding space is trained with a contrastive loss which brings compatible floorplans and trajectories close to each other, while pushing mismatched pairs far apart. We show that a surrogate form of the likelihood score in this embedding space is a valid approximation of the true likelihood score, making it possible to steer the denoising process towards the posterior. Across extensive experiments, our model CoGuide produces more consistent floorplans from trajectories, and is more robust than differentiable-planner baselines and guided-diffusion methods.
DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing
Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.
Toward Spatially Unbiased Generative Models
Recent image generation models show remarkable generation performance. However, they mirror strong location preference in datasets, which we call spatial bias. Therefore, generators render poor samples at unseen locations and scales. We argue that the generators rely on their implicit positional encoding to render spatial content. From our observations, the generator's implicit positional encoding is translation-variant, making the generator spatially biased. To address this issue, we propose injecting explicit positional encoding at each scale of the generator. By learning the spatially unbiased generator, we facilitate the robust use of generators in multiple tasks, such as GAN inversion, multi-scale generation, generation of arbitrary sizes and aspect ratios. Furthermore, we show that our method can also be applied to denoising diffusion probabilistic models.
Regularizing Towards Soft Equivariance Under Mixed Symmetries
Datasets often have their intrinsic symmetries, and particular deep-learning models called equivariant or invariant models have been developed to exploit these symmetries. However, if some or all of these symmetries are only approximate, which frequently happens in practice, these models may be suboptimal due to the architectural restrictions imposed on them. We tackle this issue of approximate symmetries in a setup where symmetries are mixed, i.e., they are symmetries of not single but multiple different types and the degree of approximation varies across these types. Instead of proposing a new architectural restriction as in most of the previous approaches, we present a regularizer-based method for building a model for a dataset with mixed approximate symmetries. The key component of our method is what we call equivariance regularizer for a given type of symmetries, which measures how much a model is equivariant with respect to the symmetries of the type. Our method is trained with these regularizers, one per each symmetry type, and the strength of the regularizers is automatically tuned during training, leading to the discovery of the approximation levels of some candidate symmetry types without explicit supervision. Using synthetic function approximation and motion forecasting tasks, we demonstrate that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
Geometric Algebra Attention Networks for Small Point Clouds
Much of the success of deep learning is drawn from building architectures that properly respect underlying symmetry and structure in the data on which they operate - a set of considerations that have been united under the banner of geometric deep learning. Often problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space wherein translation, rotation, and permutation equivariance are important or even vital for models to be useful in practice. In this work, we present rotation- and permutation-equivariant architectures for deep learning on these small point clouds, composed of a set of products of terms from the geometric algebra and reductions over those products using an attention mechanism. The geometric algebra provides valuable mathematical structure by which to combine vector, scalar, and other types of geometric inputs in a systematic way to account for rotation invariance or covariance, while attention yields a powerful way to impose permutation equivariance. We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology.
Reflect3r: Single-View 3D Stereo Reconstruction Aided by Mirror Reflections
Mirror reflections are common in everyday environments and can provide stereo information within a single capture, as the real and reflected virtual views are visible simultaneously. We exploit this property by treating the reflection as an auxiliary view and designing a transformation that constructs a physically valid virtual camera, allowing direct pixel-domain generation of the virtual view while adhering to the real-world imaging process. This enables a multi-view stereo setup from a single image, simplifying the imaging process, making it compatible with powerful feed-forward reconstruction models for generalizable and robust 3D reconstruction. To further exploit the geometric symmetry introduced by mirrors, we propose a symmetric-aware loss to refine pose estimation. Our framework also naturally extends to dynamic scenes, where each frame contains a mirror reflection, enabling efficient per-frame geometry recovery. For quantitative evaluation, we provide a fully customizable synthetic dataset of 16 Blender scenes, each with ground-truth point clouds and camera poses. Extensive experiments on real-world data and synthetic data are conducted to illustrate the effectiveness of our method.
Out-of-domain GAN inversion via Invertibility Decomposition for Photo-Realistic Human Face Manipulation
The fidelity of Generative Adversarial Networks (GAN) inversion is impeded by Out-Of-Domain (OOD) areas (e.g., background, accessories) in the image. Detecting the OOD areas beyond the generation ability of the pre-trained model and blending these regions with the input image can enhance fidelity. The "invertibility mask" figures out these OOD areas, and existing methods predict the mask with the reconstruction error. However, the estimated mask is usually inaccurate due to the influence of the reconstruction error in the In-Domain (ID) area. In this paper, we propose a novel framework that enhances the fidelity of human face inversion by designing a new module to decompose the input images to ID and OOD partitions with invertibility masks. Unlike previous works, our invertibility detector is simultaneously learned with a spatial alignment module. We iteratively align the generated features to the input geometry and reduce the reconstruction error in the ID regions. Thus, the OOD areas are more distinguishable and can be precisely predicted. Then, we improve the fidelity of our results by blending the OOD areas from the input image with the ID GAN inversion results. Our method produces photo-realistic results for real-world human face image inversion and manipulation. Extensive experiments demonstrate our method's superiority over existing methods in the quality of GAN inversion and attribute manipulation.
Symmetry-Aware Robot Design with Structured Subgroups
Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability.
Linking Past and Future Null Infinity in Three Dimensions
We provide a mapping between past null and future null infinity in three-dimensional flat space, using symmetry considerations. From this we derive a mapping between the corresponding asymptotic symmetry groups. By studying the metric at asymptotic regions, we find that the mapping is energy preserving and yields an infinite number of conservation laws.
Geometric Trajectory Diffusion Models
Generative models have shown great promise in generating 3D geometric systems, which is a fundamental problem in many natural science domains such as molecule and protein design. However, existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature. In this work, we propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories. Modeling such distribution is challenging as it requires capturing both the complex spatial interactions with physical symmetries and temporal correspondence encapsulated in the dynamics. We theoretically justify that diffusion models with equivariant temporal kernels can lead to density with desired symmetry, and develop a novel transition kernel leveraging SE(3)-equivariant spatial convolution and temporal attention. Furthermore, to induce an expressive trajectory distribution for conditional generation, we introduce a generalized learnable geometric prior into the forward diffusion process to enhance temporal conditioning. We conduct extensive experiments on both unconditional and conditional generation in various scenarios, including physical simulation, molecular dynamics, and pedestrian motion. Empirical results on a wide suite of metrics demonstrate that GeoTDM can generate realistic geometric trajectories with significantly higher quality.
Approximately Piecewise E(3) Equivariant Point Networks
Integrating a notion of symmetry into point cloud neural networks is a provably effective way to improve their generalization capability. Of particular interest are E(3) equivariant point cloud networks where Euclidean transformations applied to the inputs are preserved in the outputs. Recent efforts aim to extend networks that are E(3) equivariant, to accommodate inputs made of multiple parts, each of which exhibits local E(3) symmetry. In practical settings, however, the partitioning into individually transforming regions is unknown a priori. Errors in the partition prediction would unavoidably map to errors in respecting the true input symmetry. Past works have proposed different ways to predict the partition, which may exhibit uncontrolled errors in their ability to maintain equivariance to the actual partition. To this end, we introduce APEN: a general framework for constructing approximate piecewise-E(3) equivariant point networks. Our primary insight is that functions that are equivariant with respect to a finer partition will also maintain equivariance in relation to the true partition. Leveraging this observation, we propose a design where the equivariance approximation error at each layers can be bounded solely in terms of (i) uncertainty quantification of the partition prediction, and (ii) bounds on the probability of failing to suggest a proper subpartition of the ground truth one. We demonstrate the effectiveness of APEN using two data types exemplifying part-based symmetry: (i) real-world scans of room scenes containing multiple furniture-type objects; and, (ii) human motions, characterized by articulated parts exhibiting rigid movement. Our empirical results demonstrate the advantage of integrating piecewise E(3) symmetry into network design, showing a distinct improvement in generalization compared to prior works for both classification and segmentation tasks.
A Video is Worth 256 Bases: Spatial-Temporal Expectation-Maximization Inversion for Zero-Shot Video Editing
This paper presents a video inversion approach for zero-shot video editing, which aims to model the input video with low-rank representation during the inversion process. The existing video editing methods usually apply the typical 2D DDIM inversion or na\"ive spatial-temporal DDIM inversion before editing, which leverages time-varying representation for each frame to derive noisy latent. Unlike most existing approaches, we propose a Spatial-Temporal Expectation-Maximization (STEM) inversion, which formulates the dense video feature under an expectation-maximization manner and iteratively estimates a more compact basis set to represent the whole video. Each frame applies the fixed and global representation for inversion, which is more friendly for temporal consistency during reconstruction and editing. Extensive qualitative and quantitative experiments demonstrate that our STEM inversion can achieve consistent improvement on two state-of-the-art video editing methods.
InverseMeetInsert: Robust Real Image Editing via Geometric Accumulation Inversion in Guided Diffusion Models
In this paper, we introduce Geometry-Inverse-Meet-Pixel-Insert, short for GEO, an exceptionally versatile image editing technique designed to cater to customized user requirements at both local and global scales. Our approach seamlessly integrates text prompts and image prompts to yield diverse and precise editing outcomes. Notably, our method operates without the need for training and is driven by two key contributions: (i) a novel geometric accumulation loss that enhances DDIM inversion to faithfully preserve pixel space geometry and layout, and (ii) an innovative boosted image prompt technique that combines pixel-level editing for text-only inversion with latent space geometry guidance for standard classifier-free reversion. Leveraging the publicly available Stable Diffusion model, our approach undergoes extensive evaluation across various image types and challenging prompt editing scenarios, consistently delivering high-fidelity editing results for real images.
Constructing Invariant and Equivariant Operations by Symmetric Tensor Network
Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials.
Generative Adversarial Symmetry Discovery
Despite the success of equivariant neural networks in scientific applications, they require knowing the symmetry group a priori. However, it may be difficult to know which symmetry to use as an inductive bias in practice. Enforcing the wrong symmetry could even hurt the performance. In this paper, we propose a framework, LieGAN, to automatically discover equivariances from a dataset using a paradigm akin to generative adversarial training. Specifically, a generator learns a group of transformations applied to the data, which preserve the original distribution and fool the discriminator. LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries such as the rotation group SO(n), restricted Lorentz group SO(1,3)^+ in trajectory prediction and top-quark tagging tasks. The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
Invariant Slot Attention: Object Discovery with Slot-Centric Reference Frames
Automatically discovering composable abstractions from raw perceptual data is a long-standing challenge in machine learning. Recent slot-based neural networks that learn about objects in a self-supervised manner have made exciting progress in this direction. However, they typically fall short at adequately capturing spatial symmetries present in the visual world, which leads to sample inefficiency, such as when entangling object appearance and pose. In this paper, we present a simple yet highly effective method for incorporating spatial symmetries via slot-centric reference frames. We incorporate equivariance to per-object pose transformations into the attention and generation mechanism of Slot Attention by translating, scaling, and rotating position encodings. These changes result in little computational overhead, are easy to implement, and can result in large gains in terms of data efficiency and overall improvements to object discovery. We evaluate our method on a wide range of synthetic object discovery benchmarks namely CLEVR, Tetrominoes, CLEVRTex, Objects Room and MultiShapeNet, and show promising improvements on the challenging real-world Waymo Open dataset.
MOVE: A Simple Motion-Based Data Collection Paradigm for Spatial Generalization in Robotic Manipulation
Imitation learning method has shown immense promise for robotic manipulation, yet its practical deployment is fundamentally constrained by the data scarcity. Despite prior work on collecting large-scale datasets, there still remains a significant gap to robust spatial generalization. We identify a key limitation: individual trajectories, regardless of their length, are typically collected from a single, static spatial configuration of the environment. This includes fixed object and target spatial positions as well as unchanging camera viewpoints, which significantly restricts the diversity of spatial information available for learning. To address this critical bottleneck in data efficiency, we propose MOtion-Based Variability Enhancement (MOVE), a simple yet effective data collection paradigm that enables the acquisition of richer spatial information from dynamic demonstrations. Our core contribution is an augmentation strategy that injects motion into any movable objects within the environment for each demonstration. This process implicitly generates a dense and diverse set of spatial configurations within a single trajectory. We conduct extensive experiments in both simulation and real-world environments to validate our approach. For example, in simulation tasks requiring strong spatial generalization, MOVE achieves an average success rate of 39.1\%, a 76.1\% relative improvement over the static data collection paradigm (22.2\%), and yields up to 2--5times gains in data efficiency on certain tasks. Our code is available at https://github.com/lucywang720/MOVE.
Lie Group Decompositions for Equivariant Neural Networks
Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.
Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection
Popular representation learning methods encourage feature invariance under transformations applied at the input. However, in 3D perception tasks like object localization and segmentation, outputs are naturally equivariant to some transformations, such as rotation. Using pre-training loss functions that encourage equivariance of features under certain transformations provides a strong self-supervision signal while also retaining information of geometric relationships between transformed feature representations. This can enable improved performance in downstream tasks that are equivariant to such transformations. In this paper, we propose a spatio-temporal equivariant learning framework by considering both spatial and temporal augmentations jointly. Our experiments show that the best performance arises with a pre-training approach that encourages equivariance to translation, scaling, and flip, rotation and scene flow. For spatial augmentations, we find that depending on the transformation, either a contrastive objective or an equivariance-by-classification objective yields best results. To leverage real-world object deformations and motion, we consider sequential LiDAR scene pairs and develop a novel 3D scene flow-based equivariance objective that leads to improved performance overall. We show our pre-training method for 3D object detection which outperforms existing equivariant and invariant approaches in many settings.
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO
Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries
Deep ensembles (DE) have been successful in improving model performance by learning diverse members via the stochasticity of random initialization. While recent works have attempted to promote further diversity in DE via hyperparameters or regularizing loss functions, these methods primarily still rely on a stochastic approach to explore the hypothesis space. In this work, we present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes, which explore the hypothesis space beyond stochastic perturbations of model weights and hyperparameters. We leverage recent advances in contrastive representation learning to create models that separately capture opposing hypotheses of invariant and equivariant functional classes and present a simple ensembling approach to efficiently combine appropriate hypotheses for a given task. We show that MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet. As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks.
Geometric Algebra Transformers
Problems involving geometric data arise in a variety of fields, including computer vision, robotics, chemistry, and physics. Such data can take numerous forms, such as points, direction vectors, planes, or transformations, but to date there is no single architecture that can be applied to such a wide variety of geometric types while respecting their symmetries. In this paper we introduce the Geometric Algebra Transformer (GATr), a general-purpose architecture for geometric data. GATr represents inputs, outputs, and hidden states in the projective geometric algebra, which offers an efficient 16-dimensional vector space representation of common geometric objects as well as operators acting on them. GATr is equivariant with respect to E(3), the symmetry group of 3D Euclidean space. As a transformer, GATr is scalable, expressive, and versatile. In experiments with n-body modeling and robotic planning, GATr shows strong improvements over non-geometric baselines.
Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding
3D GAN inversion aims to achieve high reconstruction fidelity and reasonable 3D geometry simultaneously from a single image input. However, existing 3D GAN inversion methods rely on time-consuming optimization for each individual case. In this work, we introduce a novel encoder-based inversion framework based on EG3D, one of the most widely-used 3D GAN models. We leverage the inherent properties of EG3D's latent space to design a discriminator and a background depth regularization. This enables us to train a geometry-aware encoder capable of converting the input image into corresponding latent code. Additionally, we explore the feature space of EG3D and develop an adaptive refinement stage that improves the representation ability of features in EG3D to enhance the recovery of fine-grained textural details. Finally, we propose an occlusion-aware fusion operation to prevent distortion in unobserved regions. Our method achieves impressive results comparable to optimization-based methods while operating up to 500 times faster. Our framework is well-suited for applications such as semantic editing.
Inverting Adversarially Robust Networks for Image Synthesis
Despite unconditional feature inversion being the foundation of many image synthesis applications, training an inverter demands a high computational budget, large decoding capacity and imposing conditions such as autoregressive priors. To address these limitations, we propose the use of adversarially robust representations as a perceptual primitive for feature inversion. We train an adversarially robust encoder to extract disentangled and perceptually-aligned image representations, making them easily invertible. By training a simple generator with the mirror architecture of the encoder, we achieve superior reconstruction quality and generalization over standard models. Based on this, we propose an adversarially robust autoencoder and demonstrate its improved performance on style transfer, image denoising and anomaly detection tasks. Compared to recent ImageNet feature inversion methods, our model attains improved performance with significantly less complexity.
Iterative SE(3)-Transformers
When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays these symmetries. Recent work in this area has successfully made use of an SE(3)-equivariant model, applying an iterative SE(3)-equivariant attention mechanism. Motivated by this application, we implement an iterative version of the SE(3)-Transformer, an SE(3)-equivariant attention-based model for graph data. We address the additional complications which arise when applying the SE(3)-Transformer in an iterative fashion, compare the iterative and single-pass versions on a toy problem, and consider why an iterative model may be beneficial in some problem settings. We make the code for our implementation available to the community.
On the generation of periodic discrete structures with identical two-point correlation
Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media.
Hidden symmetries of ReLU networks
The parameter space for any fixed architecture of feedforward ReLU neural networks serves as a proxy during training for the associated class of functions - but how faithful is this representation? It is known that many different parameter settings can determine the same function. Moreover, the degree of this redundancy is inhomogeneous: for some networks, the only symmetries are permutation of neurons in a layer and positive scaling of parameters at a neuron, while other networks admit additional hidden symmetries. In this work, we prove that, for any network architecture where no layer is narrower than the input, there exist parameter settings with no hidden symmetries. We also describe a number of mechanisms through which hidden symmetries can arise, and empirically approximate the functional dimension of different network architectures at initialization. These experiments indicate that the probability that a network has no hidden symmetries decreases towards 0 as depth increases, while increasing towards 1 as width and input dimension increase.
Bayesian Updates Compose Optically
Bayes' rule tells us how to invert a causal process in order to update our beliefs in light of new evidence. If the process is believed to have a complex compositional structure, we may ask whether composing the inversions of the component processes gives the same belief update as the inversion of the whole. We answer this question affirmatively, showing that the relevant compositional structure is precisely that of the lens pattern, and that we can think of Bayesian inversion as a particular instance of a state-dependent morphism in a corresponding fibred category. We define a general notion of (mixed) Bayesian lens, and discuss the (un)lawfulness of these lenses when their contravariant components are exact Bayesian inversions. We prove our main result both abstractly and concretely, for both discrete and continuous states, taking care to illustrate the common structures.
Re-Thinking Inverse Graphics With Large Language Models
Inverse graphics -- the task of inverting an image into physical variables that, when rendered, enable reproduction of the observed scene -- is a fundamental challenge in computer vision and graphics. Disentangling an image into its constituent elements, such as the shape, color, and material properties of the objects of the 3D scene that produced it, requires a comprehensive understanding of the environment. This requirement limits the ability of existing carefully engineered approaches to generalize across domains. Inspired by the zero-shot ability of large language models (LLMs) to generalize to novel contexts, we investigate the possibility of leveraging the broad world knowledge encoded in such models in solving inverse-graphics problems. To this end, we propose the Inverse-Graphics Large Language Model (IG-LLM), an inverse-graphics framework centered around an LLM, that autoregressively decodes a visual embedding into a structured, compositional 3D-scene representation. We incorporate a frozen pre-trained visual encoder and a continuous numeric head to enable end-to-end training. Through our investigation, we demonstrate the potential of LLMs to facilitate inverse graphics through next-token prediction, without the use of image-space supervision. Our analysis opens up new possibilities for precise spatial reasoning about images that exploit the visual knowledge of LLMs. We will release our code and data to ensure the reproducibility of our investigation and to facilitate future research at https://ig-llm.is.tue.mpg.de/
Dual Encoder GAN Inversion for High-Fidelity 3D Head Reconstruction from Single Images
3D GAN inversion aims to project a single image into the latent space of a 3D Generative Adversarial Network (GAN), thereby achieving 3D geometry reconstruction. While there exist encoders that achieve good results in 3D GAN inversion, they are predominantly built on EG3D, which specializes in synthesizing near-frontal views and is limiting in synthesizing comprehensive 3D scenes from diverse viewpoints. In contrast to existing approaches, we propose a novel framework built on PanoHead, which excels in synthesizing images from a 360-degree perspective. To achieve realistic 3D modeling of the input image, we introduce a dual encoder system tailored for high-fidelity reconstruction and realistic generation from different viewpoints. Accompanying this, we propose a stitching framework on the triplane domain to get the best predictions from both. To achieve seamless stitching, both encoders must output consistent results despite being specialized for different tasks. For this reason, we carefully train these encoders using specialized losses, including an adversarial loss based on our novel occlusion-aware triplane discriminator. Experiments reveal that our approach surpasses the existing encoder training methods qualitatively and quantitatively. Please visit the project page: https://berkegokmen1.github.io/dual-enc-3d-gan-inv.
Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models
Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the image. Most current inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. Here, we formulate the problem as finding the roots of an implicit equation and design a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis. A naive application of NR may be computationally infeasible and tends to converge to incorrect solutions. We describe an efficient regularized formulation that converges quickly to a solution that provides high-quality reconstructions. We also identify a source of inconsistency stemming from prompt conditioning during the inversion process, which significantly degrades the inversion quality. To address this, we introduce a prompt-aware adjustment of the encoding, effectively correcting this issue. Our solution, Regularized Newton-Raphson Inversion, inverts an image within 0.5 sec for latent consistency models, opening the door for interactive image editing. We further demonstrate improved results in image interpolation and generation of rare objects.
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
Isometric Representation Learning for Disentangled Latent Space of Diffusion Models
The latent space of diffusion model mostly still remains unexplored, despite its great success and potential in the field of generative modeling. In fact, the latent space of existing diffusion models are entangled, with a distorted mapping from its latent space to image space. To tackle this problem, we present Isometric Diffusion, equipping a diffusion model with a geometric regularizer to guide the model to learn a geometrically sound latent space of the training data manifold. This approach allows diffusion models to learn a more disentangled latent space, which enables smoother interpolation, more accurate inversion, and more precise control over attributes directly in the latent space. Our extensive experiments consisting of image interpolations, image inversions, and linear editing show the effectiveness of our method.
Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding
Encouraged by the growing availability of pre-trained 2D diffusion models, image-to-3D generation by leveraging Score Distillation Sampling (SDS) is making remarkable progress. Most existing methods combine novel-view lifting from 2D diffusion models which usually take the reference image as a condition while applying hard L2 image supervision at the reference view. Yet heavily adhering to the image is prone to corrupting the inductive knowledge of the 2D diffusion model leading to flat or distorted 3D generation frequently. In this work, we reexamine image-to-3D in a novel perspective and present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input. Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss. The core of our framework lies in a two-stage diffusion model fine-tuning. Firstly, we fine-tune a text-to-3D diffusion model by substituting its text encoder with an image encoder, by which the model preliminarily acquires image-to-image capabilities. Secondly, we perform fine-tuning using our Explicit Multi-view Attention (EMA) which combines noisy multi-view images with the noise-free reference image as an explicit condition. CLIP embedding is sent to the diffusion model throughout the whole process while reference images are discarded once after fine-tuning. As a result, with a single image CLIP embedding, Isotropic3D is capable of generating multi-view mutually consistent images and also a 3D model with more symmetrical and neat content, well-proportioned geometry, rich colored texture, and less distortion compared with existing image-to-3D methods while still preserving the similarity to the reference image to a large extent. The project page is available at https://isotropic3d.github.io/. The code and models are available at https://github.com/pkunliu/Isotropic3D.
FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose {\em FlowAlign}, a novel inversion-free flow-based framework for consistent image editing with optimal control-based trajectory control. Specifically, FlowAlign introduces source similarity at the terminal point as a regularization term to promote smoother and more consistent trajectories during the editing process. Notably, our terminal point regularization is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highliting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields
Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.
UMERegRobust - Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method).
Geometry Forcing: Marrying Video Diffusion and 3D Representation for Consistent World Modeling
Videos inherently represent 2D projections of a dynamic 3D world. However, our analysis suggests that video diffusion models trained solely on raw video data often fail to capture meaningful geometric-aware structure in their learned representations. To bridge this gap between video diffusion models and the underlying 3D nature of the physical world, we propose Geometry Forcing, a simple yet effective method that encourages video diffusion models to internalize latent 3D representations. Our key insight is to guide the model's intermediate representations toward geometry-aware structure by aligning them with features from a pretrained geometric foundation model. To this end, we introduce two complementary alignment objectives: Angular Alignment, which enforces directional consistency via cosine similarity, and Scale Alignment, which preserves scale-related information by regressing unnormalized geometric features from normalized diffusion representation. We evaluate Geometry Forcing on both camera view-conditioned and action-conditioned video generation tasks. Experimental results demonstrate that our method substantially improves visual quality and 3D consistency over the baseline methods. Project page: https://GeometryForcing.github.io.
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
We address the problem of synthesizing multi-view optical illusions: images that change appearance upon a transformation, such as a flip or rotation. We propose a simple, zero-shot method for obtaining these illusions from off-the-shelf text-to-image diffusion models. During the reverse diffusion process, we estimate the noise from different views of a noisy image, and then combine these noise estimates together and denoise the image. A theoretical analysis suggests that this method works precisely for views that can be written as orthogonal transformations, of which permutations are a subset. This leads to the idea of a visual anagram--an image that changes appearance under some rearrangement of pixels. This includes rotations and flips, but also more exotic pixel permutations such as a jigsaw rearrangement. Our approach also naturally extends to illusions with more than two views. We provide both qualitative and quantitative results demonstrating the effectiveness and flexibility of our method. Please see our project webpage for additional visualizations and results: https://dangeng.github.io/visual_anagrams/
Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models
Using image models naively for solving inverse video problems often suffers from flickering, texture-sticking, and temporal inconsistency in generated videos. To tackle these problems, in this paper, we view frames as continuous functions in the 2D space, and videos as a sequence of continuous warping transformations between different frames. This perspective allows us to train function space diffusion models only on images and utilize them to solve temporally correlated inverse problems. The function space diffusion models need to be equivariant with respect to the underlying spatial transformations. To ensure temporal consistency, we introduce a simple post-hoc test-time guidance towards (self)-equivariant solutions. Our method allows us to deploy state-of-the-art latent diffusion models such as Stable Diffusion XL to solve video inverse problems. We demonstrate the effectiveness of our method for video inpainting and 8times video super-resolution, outperforming existing techniques based on noise transformations. We provide generated video results: https://giannisdaras.github.io/warped_diffusion.github.io/.
Harmonizing Geometry and Uncertainty: Diffusion with Hyperspheres
Do contemporary diffusion models preserve the class geometry of hyperspherical data? Standard diffusion models rely on isotropic Gaussian noise in the forward process, inherently favoring Euclidean spaces. However, many real-world problems involve non-Euclidean distributions, such as hyperspherical manifolds, where class-specific patterns are governed by angular geometry within hypercones. When modeled in Euclidean space, these angular subtleties are lost, leading to suboptimal generative performance. To address this limitation, we introduce HyperSphereDiff to align hyperspherical structures with directional noise, preserving class geometry and effectively capturing angular uncertainty. We demonstrate both theoretically and empirically that this approach aligns the generative process with the intrinsic geometry of hyperspherical data, resulting in more accurate and geometry-aware generative models. We evaluate our framework on four object datasets and two face datasets, showing that incorporating angular uncertainty better preserves the underlying hyperspherical manifold. Resources are available at: {https://github.com/IAB-IITJ/Harmonizing-Geometry-and-Uncertainty-Diffusion-with-Hyperspheres/}
EDICT: Exact Diffusion Inversion via Coupled Transformations
Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem in denoising diffusion models (DDMs), with applications for real image editing. The state-of-the-art approach for real image editing with inversion uses denoising diffusion implicit models (DDIMs) to deterministically noise the image to the intermediate state along the path that the denoising would follow given the original conditioning. However, DDIM inversion for real images is unstable as it relies on local linearization assumptions, which result in the propagation of errors, leading to incorrect image reconstruction and loss of content. To alleviate these problems, we propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers. EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors which are used to invert each other in an alternating fashion. Using Stable Diffusion, a state-of-the-art latent diffusion model, we demonstrate that EDICT successfully reconstructs real images with high fidelity. On complex image datasets like MS-COCO, EDICT reconstruction significantly outperforms DDIM, improving the mean square error of reconstruction by a factor of two. Using noise vectors inverted from real images, EDICT enables a wide range of image edits--from local and global semantic edits to image stylization--while maintaining fidelity to the original image structure. EDICT requires no model training/finetuning, prompt tuning, or extra data and can be combined with any pretrained DDM. Code is available at https://github.com/salesforce/EDICT.
CLIPSym: Delving into Symmetry Detection with CLIP
Symmetry is one of the most fundamental geometric cues in computer vision, and detecting it has been an ongoing challenge. With the recent advances in vision-language models,~i.e., CLIP, we investigate whether a pre-trained CLIP model can aid symmetry detection by leveraging the additional symmetry cues found in the natural image descriptions. We propose CLIPSym, which leverages CLIP's image and language encoders and a rotation-equivariant decoder based on a hybrid of Transformer and G-Convolution to detect rotation and reflection symmetries. To fully utilize CLIP's language encoder, we have developed a novel prompting technique called Semantic-Aware Prompt Grouping (SAPG), which aggregates a diverse set of frequent object-based prompts to better integrate the semantic cues for symmetry detection. Empirically, we show that CLIPSym outperforms the current state-of-the-art on three standard symmetry detection datasets (DENDI, SDRW, and LDRS). Finally, we conduct detailed ablations verifying the benefits of CLIP's pre-training, the proposed equivariant decoder, and the SAPG technique. The code is available at https://github.com/timyoung2333/CLIPSym.
Tight Inversion: Image-Conditioned Inversion for Real Image Editing
Text-to-image diffusion models offer powerful image editing capabilities. To edit real images, many methods rely on the inversion of the image into Gaussian noise. A common approach to invert an image is to gradually add noise to the image, where the noise is determined by reversing the sampling equation. This process has an inherent tradeoff between reconstruction and editability, limiting the editing of challenging images such as highly-detailed ones. Recognizing the reliance of text-to-image models inversion on a text condition, this work explores the importance of the condition choice. We show that a condition that precisely aligns with the input image significantly improves the inversion quality. Based on our findings, we introduce Tight Inversion, an inversion method that utilizes the most possible precise condition -- the input image itself. This tight condition narrows the distribution of the model's output and enhances both reconstruction and editability. We demonstrate the effectiveness of our approach when combined with existing inversion methods through extensive experiments, evaluating the reconstruction accuracy as well as the integration with various editing methods.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
Group equivariant neural posterior estimation
Simulation-based inference with conditional neural density estimators is a powerful approach to solving inverse problems in science. However, these methods typically treat the underlying forward model as a black box, with no way to exploit geometric properties such as equivariances. Equivariances are common in scientific models, however integrating them directly into expressive inference networks (such as normalizing flows) is not straightforward. We here describe an alternative method to incorporate equivariances under joint transformations of parameters and data. Our method -- called group equivariant neural posterior estimation (GNPE) -- is based on self-consistently standardizing the "pose" of the data while estimating the posterior over parameters. It is architecture-independent, and applies both to exact and approximate equivariances. As a real-world application, we use GNPE for amortized inference of astrophysical binary black hole systems from gravitational-wave observations. We show that GNPE achieves state-of-the-art accuracy while reducing inference times by three orders of magnitude.
POLARIS: Projection-Orthogonal Least Squares for Robust and Adaptive Inversion in Diffusion Models
The Inversion-Denoising Paradigm, which is based on diffusion models, excels in diverse image editing and restoration tasks. We revisit its mechanism and reveal a critical, overlooked factor in reconstruction degradation: the approximate noise error. This error stems from approximating the noise at step t with the prediction at step t-1, resulting in severe error accumulation throughout the inversion process. We introduce Projection-Orthogonal Least Squares for Robust and Adaptive Inversion (POLARIS), which reformulates inversion from an error-compensation problem into an error-origin problem. Rather than optimizing embeddings or latent codes to offset accumulated drift, POLARIS treats the guidance scale ω as a step-wise variable and derives a mathematically grounded formula to minimize inversion error at each step. Remarkably, POLARIS improves inversion latent quality with just one line of code. With negligible performance overhead, it substantially mitigates noise approximation errors and consistently improves the accuracy of downstream tasks.
Deep Learning without Weight Symmetry
Backpropagation (BP), a foundational algorithm for training artificial neural networks, predominates in contemporary deep learning. Although highly successful, it is often considered biologically implausible. A significant limitation arises from the need for precise symmetry between connections in the backward and forward pathways to backpropagate gradient signals accurately, which is not observed in biological brains. Researchers have proposed several algorithms to alleviate this symmetry constraint, such as feedback alignment and direct feedback alignment. However, their divergence from backpropagation dynamics presents challenges, particularly in deeper networks and convolutional layers. Here we introduce the Product Feedback Alignment (PFA) algorithm. Our findings demonstrate that PFA closely approximates BP and achieves comparable performance in deep convolutional networks while avoiding explicit weight symmetry. Our results offer a novel solution to the longstanding weight symmetry problem, leading to more biologically plausible learning in deep convolutional networks compared to earlier methods.
Git Re-Basin: Merging Models modulo Permutation Symmetries
The success of deep learning is due in large part to our ability to solve certain massive non-convex optimization problems with relative ease. Though non-convex optimization is NP-hard, simple algorithms -- often variants of stochastic gradient descent -- exhibit surprising effectiveness in fitting large neural networks in practice. We argue that neural network loss landscapes often contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden units a la Entezari et al. 2021. We introduce three algorithms to permute the units of one model to bring them into alignment with a reference model in order to merge the two models in weight space. This transformation produces a functionally equivalent set of weights that lie in an approximately convex basin near the reference model. Experimentally, we demonstrate the single basin phenomenon across a variety of model architectures and datasets, including the first (to our knowledge) demonstration of zero-barrier linear mode connectivity between independently trained ResNet models on CIFAR-10. Additionally, we identify intriguing phenomena relating model width and training time to mode connectivity. Finally, we discuss shortcomings of the linear mode connectivity hypothesis, including a counterexample to the single basin theory.
Crystal Structure Prediction by Joint Equivariant Diffusion
Crystal Structure Prediction (CSP) is crucial in various scientific disciplines. While CSP can be addressed by employing currently-prevailing generative models (e.g. diffusion models), this task encounters unique challenges owing to the symmetric geometry of crystal structures -- the invariance of translation, rotation, and periodicity. To incorporate the above symmetries, this paper proposes DiffCSP, a novel diffusion model to learn the structure distribution from stable crystals. To be specific, DiffCSP jointly generates the lattice and atom coordinates for each crystal by employing a periodic-E(3)-equivariant denoising model, to better model the crystal geometry. Notably, different from related equivariant generative approaches, DiffCSP leverages fractional coordinates other than Cartesian coordinates to represent crystals, remarkably promoting the diffusion and the generation process of atom positions. Extensive experiments verify that our DiffCSP significantly outperforms existing CSP methods, with a much lower computation cost in contrast to DFT-based methods. Moreover, the superiority of DiffCSP is also observed when it is extended for ab initio crystal generation.
Symmetric Neural-Collapse Representations with Supervised Contrastive Loss: The Impact of ReLU and Batching
Supervised contrastive loss (SCL) is a competitive and often superior alternative to the cross-entropy loss for classification. While prior studies have demonstrated that both losses yield symmetric training representations under balanced data, this symmetry breaks under class imbalances. This paper presents an intriguing discovery: the introduction of a ReLU activation at the final layer effectively restores the symmetry in SCL-learned representations. We arrive at this finding analytically, by establishing that the global minimizers of an unconstrained features model with SCL loss and entry-wise non-negativity constraints form an orthogonal frame. Extensive experiments conducted across various datasets, architectures, and imbalance scenarios corroborate our finding. Importantly, our experiments reveal that the inclusion of the ReLU activation restores symmetry without compromising test accuracy. This constitutes the first geometry characterization of SCL under imbalances. Additionally, our analysis and experiments underscore the pivotal role of batch selection strategies in representation geometry. By proving necessary and sufficient conditions for mini-batch choices that ensure invariant symmetric representations, we introduce batch-binding as an efficient strategy that guarantees these conditions hold.
Transport-Guided Rectified Flow Inversion: Improved Image Editing Using Optimal Transport Theory
Effective image inversion in rectified flow models - mapping real images to editable latent representations - is crucial for practical image editing applications; however, achieving optimal balance between reconstruction fidelity and editing flexibility remains a fundamental challenge. In this work, we introduce the Optimal Transport Inversion Pipeline (OTIP), a zero-shot framework that leverages optimal transport theory to guide the inversion process in rectified flow models. Our underlying hypothesis is that incorporating transport-based guidance during the reverse diffusion process can effectively balance reconstruction accuracy and editing controllability through principled trajectory optimization. The method computes optimal transport paths between image and noise distributions while maintaining computational efficiency. Our approach achieves high-fidelity reconstruction with LPIPS scores of 0.001 and SSIM of 0.992 on face editing benchmarks, demonstrating superior preservation of fine-grained details compared to existing methods. We evaluate the framework across multiple editing tasks, observing 7.8% to 12.9% improvements in reconstruction loss over RF-Inversion on the LSUN-Bedroom and LSUN-Church datasets, respectively. For semantic face editing, our method achieves an 11.2% improvement in identity preservation and a 1.6% enhancement in perceptual quality, while maintaining computational efficiency comparable to baseline approaches. Qualitatively, our method produces visually compelling edits with superior semantic consistency and fine-grained detail preservation across diverse editing scenarios. Code is available at: https://github.com/marianlupascu/OT-Inversion
Make It So: Steering StyleGAN for Any Image Inversion and Editing
StyleGAN's disentangled style representation enables powerful image editing by manipulating the latent variables, but accurately mapping real-world images to their latent variables (GAN inversion) remains a challenge. Existing GAN inversion methods struggle to maintain editing directions and produce realistic results. To address these limitations, we propose Make It So, a novel GAN inversion method that operates in the Z (noise) space rather than the typical W (latent style) space. Make It So preserves editing capabilities, even for out-of-domain images. This is a crucial property that was overlooked in prior methods. Our quantitative evaluations demonstrate that Make It So outperforms the state-of-the-art method PTI~roich2021pivotal by a factor of five in inversion accuracy and achieves ten times better edit quality for complex indoor scenes.
Lines and opposition in Lie incidence geometries of exceptional type
We characterise sets of points of exceptional Lie incidence geometries, that is, the natural geometries arising from spherical buildings of exceptional types F_4, E_6, E_7, E_8 and G_2, that form a line using the opposition relation. With that, we obtain a classification of so-called ``geometric lines'' in many of these geometries. Furthermore, our results lead to a characterisation of geometric lines in finite exceptional Lie incidence geometries as minimal blocking sets, that is, point sets of the size of a line admitting no object opposite to all of their members, in most cases, and we classify all exceptions. As a further consequence, we obtain a characterisation of automorphisms of exceptional spherical buildings as certain opposition preserving maps.
WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. Code is available online at https://github.com/httk/wyckoffdiff
Beyond Symmetries : Anomalies in Transverse Ward--Takahashi Identities
Anomalies in transverse Ward--Takahashi identities are studied, allowing discussion of the feasibility of anomalies arising in general non-symmetry Ward--Takahashi identities. We adopt the popular Fujikawa's method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and comparing symmetry and non-symmetry anomalies. Papers that claim the non-existence of transverse anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse anomalies is discussed.
RotaTouille: Rotation Equivariant Deep Learning for Contours
Contours or closed planar curves are common in many domains. For example, they appear as object boundaries in computer vision, isolines in meteorology, and the orbits of rotating machinery. In many cases when learning from contour data, planar rotations of the input will result in correspondingly rotated outputs. It is therefore desirable that deep learning models be rotationally equivariant. In addition, contours are typically represented as an ordered sequence of edge points, where the choice of starting point is arbitrary. It is therefore also desirable for deep learning methods to be equivariant under cyclic shifts. We present RotaTouille, a deep learning framework for learning from contour data that achieves both rotation and cyclic shift equivariance through complex-valued circular convolution. We further introduce and characterize equivariant non-linearities, coarsening layers, and global pooling layers to obtain invariant representations for downstream tasks. Finally, we demonstrate the effectiveness of RotaTouille through experiments in shape classification, reconstruction, and contour regression.
Universal Neural Functionals
A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize. We open-source our library for constructing UNFs at https://github.com/AllanYangZhou/universal_neural_functional.
Measuring a Parity Violation Signature in the Early Universe via Ground-based Laser Interferometers
We show that pairs of widely separated interferometers are advantageous for measuring the Stokes parameter V of a stochastic background of gravitational waves. This parameter characterizes asymmetry of amplitudes of right- and left-handed waves and generation of the asymmetry is closely related to parity violation in the early universe. The advantageous pairs include LIGO(Livingston)-LCGT and AIGO-Virgo that are relatively insensitive to Omega_GW (the simple intensity of the background). Using at least three detectors, information of the intensity Omega_GW and the degree of asymmetry V can be separately measured.
On the hardness of learning under symmetries
We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
Higgs Effect Without Lunch
Reduction in effective spacetime dimensionality can occur in field-theory models more general than the widely studied dimensional reductions based on technically consistent truncations. Situations where wavefunction factors depend nontrivially on coordinates transverse to the effective lower dimension can give rise to unusual patterns of gauge symmetry breaking. Leading-order gauge modes can be left massless, but naturally occurring Stueckelberg modes can couple importantly at quartic order and higher, thus generating a "covert" pattern of gauge symmetry breaking. Such a situation is illustrated in a five-dimensional model of scalar electrodynamics in which one spatial dimension is taken to be an interval with Dirichlet/Robin boundary conditions on opposing ends. This simple model illuminates a mechanism which also has been found in gravitational braneworld scenarios.
Semantic Image Inversion and Editing using Rectified Stochastic Differential Equations
Generative models transform random noise into images; their inversion aims to transform images back to structured noise for recovery and editing. This paper addresses two key tasks: (i) inversion and (ii) editing of a real image using stochastic equivalents of rectified flow models (such as Flux). Although Diffusion Models (DMs) have recently dominated the field of generative modeling for images, their inversion presents faithfulness and editability challenges due to nonlinearities in drift and diffusion. Existing state-of-the-art DM inversion approaches rely on training of additional parameters or test-time optimization of latent variables; both are expensive in practice. Rectified Flows (RFs) offer a promising alternative to diffusion models, yet their inversion has been underexplored. We propose RF inversion using dynamic optimal control derived via a linear quadratic regulator. We prove that the resulting vector field is equivalent to a rectified stochastic differential equation. Additionally, we extend our framework to design a stochastic sampler for Flux. Our inversion method allows for state-of-the-art performance in zero-shot inversion and editing, outperforming prior works in stroke-to-image synthesis and semantic image editing, with large-scale human evaluations confirming user preference.
WonderVerse: Extendable 3D Scene Generation with Video Generative Models
We introduce WonderVerse, a simple but effective framework for generating extendable 3D scenes. Unlike existing methods that rely on iterative depth estimation and image inpainting, often leading to geometric distortions and inconsistencies, WonderVerse leverages the powerful world-level priors embedded within video generative foundation models to create highly immersive and geometrically coherent 3D environments. Furthermore, we propose a new technique for controllable 3D scene extension to substantially increase the scale of the generated environments. Besides, we introduce a novel abnormal sequence detection module that utilizes camera trajectory to address geometric inconsistency in the generated videos. Finally, WonderVerse is compatible with various 3D reconstruction methods, allowing both efficient and high-quality generation. Extensive experiments on 3D scene generation demonstrate that our WonderVerse, with an elegant and simple pipeline, delivers extendable and highly-realistic 3D scenes, markedly outperforming existing works that rely on more complex architectures.
Equivariance with Learned Canonicalization Functions
Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations. In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves excellent performance in practice.
Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance
Interpretability methods are valuable only if their explanations faithfully describe the explained model. In this work, we consider neural networks whose predictions are invariant under a specific symmetry group. This includes popular architectures, ranging from convolutional to graph neural networks. Any explanation that faithfully explains this type of model needs to be in agreement with this invariance property. We formalize this intuition through the notion of explanation invariance and equivariance by leveraging the formalism from geometric deep learning. Through this rigorous formalism, we derive (1) two metrics to measure the robustness of any interpretability method with respect to the model symmetry group; (2) theoretical robustness guarantees for some popular interpretability methods and (3) a systematic approach to increase the invariance of any interpretability method with respect to a symmetry group. By empirically measuring our metrics for explanations of models associated with various modalities and symmetry groups, we derive a set of 5 guidelines to allow users and developers of interpretability methods to produce robust explanations.
Leveraging Semantic Asymmetry for Precise Gross Tumor Volume Segmentation of Nasopharyngeal Carcinoma in Planning CT
In the radiation therapy of nasopharyngeal carcinoma (NPC), clinicians typically delineate the gross tumor volume (GTV) using non-contrast planning computed tomography to ensure accurate radiation dose delivery. However, the low contrast between tumors and adjacent normal tissues necessitates that radiation oncologists manually delineate the tumors, often relying on diagnostic MRI for guidance. % In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method. Specifically, we posit that a healthy nasopharyngeal region is characteristically bilaterally symmetric, whereas the emergence of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose a Siamese contrastive learning segmentation framework that minimizes the voxel-wise distance between original and flipped areas without tumor and encourages a larger distance between original and flipped areas with tumor. Thus, our approach enhances the sensitivity of features to semantic asymmetries. % Extensive experiments demonstrate that the proposed SATs achieves the leading NPC GTV segmentation performance in both internal and external testing, e.g., with at least 2\% absolute Dice score improvement and 12\% average distance error reduction when compared to other state-of-the-art methods in the external testing.
4D Panoptic Segmentation as Invariant and Equivariant Field Prediction
In this paper, we develop rotation-equivariant neural networks for 4D panoptic segmentation. 4D panoptic segmentation is a recently established benchmark task for autonomous driving, which requires recognizing semantic classes and object instances on the road based on LiDAR scans, as well as assigning temporally consistent IDs to instances across time. We observe that the driving scenario is symmetric to rotations on the ground plane. Therefore, rotation-equivariance could provide better generalization and more robust feature learning. Specifically, we review the object instance clustering strategies, and restate the centerness-based approach and the offset-based approach as the prediction of invariant scalar fields and equivariant vector fields. Other sub-tasks are also unified from this perspective, and different invariant and equivariant layers are designed to facilitate their predictions. Through evaluation on the standard 4D panoptic segmentation benchmark of SemanticKITTI, we show that our equivariant models achieve higher accuracy with lower computational costs compared to their non-equivariant counterparts. Moreover, our method sets the new state-of-the-art performance and achieves 1st place on the SemanticKITTI 4D Panoptic Segmentation leaderboard.
Flow Equivariant World Models: Memory for Partially Observed Dynamic Environments
Embodied systems experience the world as 'a symphony of flows': a combination of many continuous streams of sensory input coupled to self-motion, interwoven with the dynamics of external objects. These streams obey smooth, time-parameterized symmetries, which combine through a precisely structured algebra; yet most neural network world models ignore this structure and instead repeatedly re-learn the same transformations from data. In this work, we introduce 'Flow Equivariant World Models', a framework in which both self-motion and external object motion are unified as one-parameter Lie group 'flows'. We leverage this unification to implement group equivariance with respect to these transformations, thereby providing a stable latent world representation over hundreds of timesteps. On both 2D and 3D partially observed video world modeling benchmarks, we demonstrate that Flow Equivariant World Models significantly outperform comparable state-of-the-art diffusion-based and memory-augmented world modeling architectures -- particularly when there are predictable world dynamics outside the agent's current field of view. We show that flow equivariance is particularly beneficial for long rollouts, generalizing far beyond the training horizon. By structuring world model representations with respect to internal and external motion, flow equivariance charts a scalable route to data efficient, symmetry-guided, embodied intelligence. Project link: https://flowequivariantworldmodels.github.io.
Model Inversion Robustness: Can Transfer Learning Help?
Model Inversion (MI) attacks aim to reconstruct private training data by abusing access to machine learning models. Contemporary MI attacks have achieved impressive attack performance, posing serious threats to privacy. Meanwhile, all existing MI defense methods rely on regularization that is in direct conflict with the training objective, resulting in noticeable degradation in model utility. In this work, we take a different perspective, and propose a novel and simple Transfer Learning-based Defense against Model Inversion (TL-DMI) to render MI-robust models. Particularly, by leveraging TL, we limit the number of layers encoding sensitive information from private training dataset, thereby degrading the performance of MI attack. We conduct an analysis using Fisher Information to justify our method. Our defense is remarkably simple to implement. Without bells and whistles, we show in extensive experiments that TL-DMI achieves state-of-the-art (SOTA) MI robustness. Our code, pre-trained models, demo and inverted data are available at: https://hosytuyen.github.io/projects/TL-DMI
Reversible Inversion for Training-Free Exemplar-guided Image Editing
Exemplar-guided Image Editing (EIE) aims to modify a source image according to a visual reference. Existing approaches often require large-scale pre-training to learn relationships between the source and reference images, incurring high computational costs. As a training-free alternative, inversion techniques can be used to map the source image into a latent space for manipulation. However, our empirical study reveals that standard inversion is sub-optimal for EIE, leading to poor quality and inefficiency. To tackle this challenge, we introduce Reversible Inversion ({ReInversion)} for effective and efficient EIE. Specifically, ReInversion operates as a two-stage denoising process, which is first conditioned on the source image and subsequently on the reference. Besides, we introduce a Mask-Guided Selective Denoising (MSD) strategy to constrain edits to target regions, preserving the structural consistency of the background. Both qualitative and quantitative comparisons demonstrate that our ReInversion method achieves state-of-the-art EIE performance with the lowest computational overhead.
Effective Real Image Editing with Accelerated Iterative Diffusion Inversion
Despite all recent progress, it is still challenging to edit and manipulate natural images with modern generative models. When using Generative Adversarial Network (GAN), one major hurdle is in the inversion process mapping a real image to its corresponding noise vector in the latent space, since its necessary to be able to reconstruct an image to edit its contents. Likewise for Denoising Diffusion Implicit Models (DDIM), the linearization assumption in each inversion step makes the whole deterministic inversion process unreliable. Existing approaches that have tackled the problem of inversion stability often incur in significant trade-offs in computational efficiency. In this work we propose an Accelerated Iterative Diffusion Inversion method, dubbed AIDI, that significantly improves reconstruction accuracy with minimal additional overhead in space and time complexity. By using a novel blended guidance technique, we show that effective results can be obtained on a large range of image editing tasks without large classifier-free guidance in inversion. Furthermore, when compared with other diffusion inversion based works, our proposed process is shown to be more robust for fast image editing in the 10 and 20 diffusion steps' regimes.
What do we learn from inverting CLIP models?
We employ an inversion-based approach to examine CLIP models. Our examination reveals that inverting CLIP models results in the generation of images that exhibit semantic alignment with the specified target prompts. We leverage these inverted images to gain insights into various aspects of CLIP models, such as their ability to blend concepts and inclusion of gender biases. We notably observe instances of NSFW (Not Safe For Work) images during model inversion. This phenomenon occurs even for semantically innocuous prompts, like "a beautiful landscape," as well as for prompts involving the names of celebrities.
Frame Averaging for Invariant and Equivariant Network Design
Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks.
Noise Map Guidance: Inversion with Spatial Context for Real Image Editing
Text-guided diffusion models have become a popular tool in image synthesis, known for producing high-quality and diverse images. However, their application to editing real images often encounters hurdles primarily due to the text condition deteriorating the reconstruction quality and subsequently affecting editing fidelity. Null-text Inversion (NTI) has made strides in this area, but it fails to capture spatial context and requires computationally intensive per-timestep optimization. Addressing these challenges, we present Noise Map Guidance (NMG), an inversion method rich in a spatial context, tailored for real-image editing. Significantly, NMG achieves this without necessitating optimization, yet preserves the editing quality. Our empirical investigations highlight NMG's adaptability across various editing techniques and its robustness to variants of DDIM inversions.
Exact Diffusion Inversion via Bi-directional Integration Approximation
Recently, various methods have been proposed to address the inconsistency issue of DDIM inversion to enable image editing, such as EDICT [36] and Null-text inversion [22]. However, the above methods introduce considerable computational overhead. In this paper, we propose a new technique, named bi-directional integration approximation (BDIA), to perform exact diffusion inversion with neglible computational overhead. Suppose we would like to estimate the next diffusion state z_{i-1} at timestep t_i with the historical information (i,z_i) and (i+1,z_{i+1}). We first obtain the estimated Gaussian noise boldsymbol{epsilon}(z_i,i), and then apply the DDIM update procedure twice for approximating the ODE integration over the next time-slot [t_i, t_{i-1}] in the forward manner and the previous time-slot [t_i, t_{t+1}] in the backward manner. The DDIM step for the previous time-slot is used to refine the integration approximation made earlier when computing z_i. A nice property of BDIA-DDIM is that the update expression for z_{i-1} is a linear combination of (z_{i+1}, z_i, boldsymbol{epsilon}(z_i,i)). This allows for exact backward computation of z_{i+1} given (z_i, z_{i-1}), thus leading to exact diffusion inversion. It is demonstrated with experiments that (round-trip) BDIA-DDIM is particularly effective for image editing. Our experiments further show that BDIA-DDIM produces markedly better image sampling qualities than DDIM for text-to-image generation. BDIA can also be applied to improve the performance of other ODE solvers in addition to DDIM. In our work, it is found that applying BDIA to the EDM sampling procedure produces consistently better performance over four pre-trained models.
SymFace: Additional Facial Symmetry Loss for Deep Face Recognition
Over the past decade, there has been a steady advancement in enhancing face recognition algorithms leveraging advanced machine learning methods. The role of the loss function is pivotal in addressing face verification problems and playing a game-changing role. These loss functions have mainly explored variations among intra-class or inter-class separation. This research examines the natural phenomenon of facial symmetry in the face verification problem. The symmetry between the left and right hemi faces has been widely used in many research areas in recent decades. This paper adopts this simple approach judiciously by splitting the face image vertically into two halves. With the assumption that the natural phenomena of facial symmetry can enhance face verification methodology, we hypothesize that the two output embedding vectors of split faces must project close to each other in the output embedding space. Inspired by this concept, we penalize the network based on the disparity of embedding of the symmetrical pair of split faces. Symmetrical loss has the potential to minimize minor asymmetric features due to facial expression and lightning conditions, hence significantly increasing the inter-class variance among the classes and leading to more reliable face embedding. This loss function propels any network to outperform its baseline performance across all existing network architectures and configurations, enabling us to achieve SoTA results.
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
Symmetry learning has proven to be an effective approach for extracting the hidden structure of data, with the concept of equivariance relation playing the central role. However, most of the current studies are built on architectural theory and corresponding assumptions on the form of data. We propose Neural Fourier Transform (NFT), a general framework of learning the latent linear action of the group without assuming explicit knowledge of how the group acts on data. We present the theoretical foundations of NFT and show that the existence of a linear equivariant feature, which has been assumed ubiquitously in equivariance learning, is equivalent to the existence of a group invariant kernel on the dataspace. We also provide experimental results to demonstrate the application of NFT in typical scenarios with varying levels of knowledge about the acting group.
MIMIC: Multimodal Inversion for Model Interpretation and Conceptualization
Vision Language Models (VLMs) encode multimodal inputs over large, complex, and difficult-to-interpret architectures, which limit transparency and trust. We propose a Multimodal Inversion for Model Interpretation and Conceptualization (MIMIC) framework to visualize the internal representations of VLMs by synthesizing visual concepts corresponding to internal encodings. MIMIC uses a joint VLM-based inversion and a feature alignment objective to account for VLM's autoregressive processing. It additionally includes a triplet of regularizers for spatial alignment, natural image smoothness, and semantic realism. We quantitatively and qualitatively evaluate MIMIC by inverting visual concepts over a range of varying-length free-form VLM output texts. Reported results include both standard visual quality metrics as well as semantic text-based metrics. To the best of our knowledge, this is the first model inversion approach addressing visual interpretations of VLM concepts.
Revisiting Transformation Invariant Geometric Deep Learning: Are Initial Representations All You Need?
Geometric deep learning, i.e., designing neural networks to handle the ubiquitous geometric data such as point clouds and graphs, have achieved great successes in the last decade. One critical inductive bias is that the model can maintain invariance towards various transformations such as translation, rotation, and scaling. The existing graph neural network (GNN) approaches can only maintain permutation-invariance, failing to guarantee invariance with respect to other transformations. Besides GNNs, other works design sophisticated transformation-invariant layers, which are computationally expensive and difficult to be extended. To solve this problem, we revisit why the existing neural networks cannot maintain transformation invariance when handling geometric data. Our findings show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance rather than needing sophisticated neural layer designs. Motivated by these findings, we propose Transformation Invariant Neural Networks (TinvNN), a straightforward and general framework for geometric data. Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling before feeding the representations into neural networks. We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks. Extensive experimental results on point cloud analysis and combinatorial optimization demonstrate the effectiveness and general applicability of our proposed method. Based on the experimental results, we advocate that TinvNN should be considered a new starting point and an essential baseline for further studies of transformation-invariant geometric deep learning.
Learning Symmetrization for Equivariance with Orbit Distance Minimization
We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.
A multi-view contrastive learning framework for spatial embeddings in risk modelling
Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.
Attention on the Sphere
We introduce a generalized attention mechanism for spherical domains, enabling Transformer architectures to natively process data defined on the two-dimensional sphere - a critical need in fields such as atmospheric physics, cosmology, and robotics, where preserving spherical symmetries and topology is essential for physical accuracy. By integrating numerical quadrature weights into the attention mechanism, we obtain a geometrically faithful spherical attention that is approximately rotationally equivariant, providing strong inductive biases and leading to better performance than Cartesian approaches. To further enhance both scalability and model performance, we propose neighborhood attention on the sphere, which confines interactions to geodesic neighborhoods. This approach reduces computational complexity and introduces the additional inductive bias for locality, while retaining the symmetry properties of our method. We provide optimized CUDA kernels and memory-efficient implementations to ensure practical applicability. The method is validated on three diverse tasks: simulating shallow water equations on the rotating sphere, spherical image segmentation, and spherical depth estimation. Across all tasks, our spherical Transformers consistently outperform their planar counterparts, highlighting the advantage of geometric priors for learning on spherical domains.
VideoDirector: Precise Video Editing via Text-to-Video Models
Despite the typical inversion-then-editing paradigm using text-to-image (T2I) models has demonstrated promising results, directly extending it to text-to-video (T2V) models still suffers severe artifacts such as color flickering and content distortion. Consequently, current video editing methods primarily rely on T2I models, which inherently lack temporal-coherence generative ability, often resulting in inferior editing results. In this paper, we attribute the failure of the typical editing paradigm to: 1) Tightly Spatial-temporal Coupling. The vanilla pivotal-based inversion strategy struggles to disentangle spatial-temporal information in the video diffusion model; 2) Complicated Spatial-temporal Layout. The vanilla cross-attention control is deficient in preserving the unedited content. To address these limitations, we propose a spatial-temporal decoupled guidance (STDG) and multi-frame null-text optimization strategy to provide pivotal temporal cues for more precise pivotal inversion. Furthermore, we introduce a self-attention control strategy to maintain higher fidelity for precise partial content editing. Experimental results demonstrate that our method (termed VideoDirector) effectively harnesses the powerful temporal generation capabilities of T2V models, producing edited videos with state-of-the-art performance in accuracy, motion smoothness, realism, and fidelity to unedited content.
Joint inversion of Time-Lapse Surface Gravity and Seismic Data for Monitoring of 3D CO_2 Plumes via Deep Learning
We introduce a fully 3D, deep learning-based approach for the joint inversion of time-lapse surface gravity and seismic data for reconstructing subsurface density and velocity models. The target application of this proposed inversion approach is the prediction of subsurface CO2 plumes as a complementary tool for monitoring CO2 sequestration deployments. Our joint inversion technique outperforms deep learning-based gravity-only and seismic-only inversion models, achieving improved density and velocity reconstruction, accurate segmentation, and higher R-squared coefficients. These results indicate that deep learning-based joint inversion is an effective tool for CO_2 storage monitoring. Future work will focus on validating our approach with larger datasets, simulations with other geological storage sites, and ultimately field data.
Smooth Normalizing Flows
Normalizing flows are a promising tool for modeling probability distributions in physical systems. While state-of-the-art flows accurately approximate distributions and energies, applications in physics additionally require smooth energies to compute forces and higher-order derivatives. Furthermore, such densities are often defined on non-trivial topologies. A recent example are Boltzmann Generators for generating 3D-structures of peptides and small proteins. These generative models leverage the space of internal coordinates (dihedrals, angles, and bonds), which is a product of hypertori and compact intervals. In this work, we introduce a class of smooth mixture transformations working on both compact intervals and hypertori. Mixture transformations employ root-finding methods to invert them in practice, which has so far prevented bi-directional flow training. To this end, we show that parameter gradients and forces of such inverses can be computed from forward evaluations via the inverse function theorem. We demonstrate two advantages of such smooth flows: they allow training by force matching to simulation data and can be used as potentials in molecular dynamics simulations.
Learning Control by Iterative Inversion
We propose iterative inversion -- an algorithm for learning an inverse function without input-output pairs, but only with samples from the desired output distribution and access to the forward function. The key challenge is a distribution shift between the desired outputs and the outputs of an initial random guess, and we prove that iterative inversion can steer the learning correctly, under rather strict conditions on the function. We apply iterative inversion to learn control. Our input is a set of demonstrations of desired behavior, given as video embeddings of trajectories (without actions), and our method iteratively learns to imitate trajectories generated by the current policy, perturbed by random exploration noise. Our approach does not require rewards, and only employs supervised learning, which can be easily scaled to use state-of-the-art trajectory embedding techniques and policy representations. Indeed, with a VQ-VAE embedding, and a transformer-based policy, we demonstrate non-trivial continuous control on several tasks. Further, we report an improved performance on imitating diverse behaviors compared to reward based methods.
Consistency-diversity-realism Pareto fronts of conditional image generative models
Building world models that accurately and comprehensively represent the real world is the utmost aspiration for conditional image generative models as it would enable their use as world simulators. For these models to be successful world models, they should not only excel at image quality and prompt-image consistency but also ensure high representation diversity. However, current research in generative models mostly focuses on creative applications that are predominantly concerned with human preferences of image quality and aesthetics. We note that generative models have inference time mechanisms - or knobs - that allow the control of generation consistency, quality, and diversity. In this paper, we use state-of-the-art text-to-image and image-and-text-to-image models and their knobs to draw consistency-diversity-realism Pareto fronts that provide a holistic view on consistency-diversity-realism multi-objective. Our experiments suggest that realism and consistency can both be improved simultaneously; however there exists a clear tradeoff between realism/consistency and diversity. By looking at Pareto optimal points, we note that earlier models are better at representation diversity and worse in consistency/realism, and more recent models excel in consistency/realism while decreasing significantly the representation diversity. By computing Pareto fronts on a geodiverse dataset, we find that the first version of latent diffusion models tends to perform better than more recent models in all axes of evaluation, and there exist pronounced consistency-diversity-realism disparities between geographical regions. Overall, our analysis clearly shows that there is no best model and the choice of model should be determined by the downstream application. With this analysis, we invite the research community to consider Pareto fronts as an analytical tool to measure progress towards world models.
Null-text Inversion for Editing Real Images using Guided Diffusion Models
Recent text-guided diffusion models provide powerful image generation capabilities. Currently, a massive effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing. To edit a real image using these state-of-the-art tools, one must first invert the image with a meaningful text prompt into the pretrained model's domain. In this paper, we introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image. Our proposed inversion consists of two novel key components: (i) Pivotal inversion for diffusion models. While current methods aim at mapping random noise samples to a single input image, we use a single pivotal noise vector for each timestamp and optimize around it. We demonstrate that a direct inversion is inadequate on its own, but does provide a good anchor for our optimization. (ii) NULL-text optimization, where we only modify the unconditional textual embedding that is used for classifier-free guidance, rather than the input text embedding. This allows for keeping both the model weights and the conditional embedding intact and hence enables applying prompt-based editing while avoiding the cumbersome tuning of the model's weights. Our Null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and prompt editing, showing high-fidelity editing of real images.
ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation
Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views. Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution. However, each approach has its limitations. On one hand, directly regressing the camera poses can be ill-posed, since it assumes a single mode, which is not true under symmetry and leads to sub-optimal solutions. On the other hand, probabilistic approaches are capable of modeling the symmetry ambiguity, yet they sample the entire space of rotation uniformly by brute-force. This leads to an inevitable trade-off between high sample density, which improves model precision, and sample efficiency that determines the runtime. In this paper, we propose ADen to unify the two frameworks by employing a generator and a discriminator: the generator is trained to output multiple hypotheses of 6DoF camera pose to represent a distribution and handle multi-mode ambiguity, and the discriminator is trained to identify the hypothesis that best explains the data. This allows ADen to combine the best of both worlds, achieving substantially higher precision as well as lower runtime than previous methods in empirical evaluations.
Directional Textual Inversion for Personalized Text-to-Image Generation
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code
Text-guided diffusion models have revolutionized image generation and editing, offering exceptional realism and diversity. Specifically, in the context of diffusion-based editing, where a source image is edited according to a target prompt, the process commences by acquiring a noisy latent vector corresponding to the source image via the diffusion model. This vector is subsequently fed into separate source and target diffusion branches for editing. The accuracy of this inversion process significantly impacts the final editing outcome, influencing both essential content preservation of the source image and edit fidelity according to the target prompt. Prior inversion techniques aimed at finding a unified solution in both the source and target diffusion branches. However, our theoretical and empirical analyses reveal that disentangling these branches leads to a distinct separation of responsibilities for preserving essential content and ensuring edit fidelity. Building on this insight, we introduce "Direct Inversion," a novel technique achieving optimal performance of both branches with just three lines of code. To assess image editing performance, we present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types, accompanied by versatile annotations and comprehensive evaluation metrics. Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.
Flow Equivariant Recurrent Neural Networks
Data arrives at our senses as a continuous stream, smoothly transforming from one instant to the next. These smooth transformations can be viewed as continuous symmetries of the environment that we inhabit, defining equivalence relations between stimuli over time. In machine learning, neural network architectures that respect symmetries of their data are called equivariant and have provable benefits in terms of generalization ability and sample efficiency. To date, however, equivariance has been considered only for static transformations and feed-forward networks, limiting its applicability to sequence models, such as recurrent neural networks (RNNs), and corresponding time-parameterized sequence transformations. In this work, we extend equivariant network theory to this regime of `flows' -- one-parameter Lie subgroups capturing natural transformations over time, such as visual motion. We begin by showing that standard RNNs are generally not flow equivariant: their hidden states fail to transform in a geometrically structured manner for moving stimuli. We then show how flow equivariance can be introduced, and demonstrate that these models significantly outperform their non-equivariant counterparts in terms of training speed, length generalization, and velocity generalization, on both next step prediction and sequence classification. We present this work as a first step towards building sequence models that respect the time-parameterized symmetries which govern the world around us.
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
The Space Between: On Folding, Symmetries and Sampling
Recent findings suggest that consecutive layers of neural networks with the ReLU activation function fold the input space during the learning process. While many works hint at this phenomenon, an approach to quantify the folding was only recently proposed by means of a space folding measure based on Hamming distance in the ReLU activation space. We generalize this measure to a wider class of activation functions through introduction of equivalence classes of input data, analyse its mathematical and computational properties and come up with an efficient sampling strategy for its implementation. Moreover, it has been observed that space folding values increase with network depth when the generalization error is low, but decrease when the error increases. This underpins that learned symmetries in the data manifold (e.g., invariance under reflection) become visible in terms of space folds, contributing to the network's generalization capacity. Inspired by these findings, we outline a novel regularization scheme that encourages the network to seek solutions characterized by higher folding values.
Solving a Machine Learning Regression Problem Based on the Theory of Random Functions
This paper studies a machine learning regression problem as a multivariate approximation problem using the framework of the theory of random functions. An ab initio derivation of a regression method is proposed, starting from postulates of indifference. It is shown that if a probability measure on an infinite-dimensional function space possesses natural symmetries (invariance under translation, rotation, scaling, and Gaussianity), then the entire solution scheme, including the kernel form, the type of regularization, and the noise parameterization, follows analytically from these postulates. The resulting kernel coincides with a generalized polyharmonic spline; however, unlike existing approaches, it is not chosen empirically but arises as a consequence of the indifference principle. This result provides a theoretical foundation for a broad class of smoothing and interpolation methods, demonstrating their optimality in the absence of a priori information.
SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under 2times width expansion.
A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks
Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a L1 ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI
MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing
User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
NeRF as Non-Distant Environment Emitter in Physics-based Inverse Rendering
Physics-based inverse rendering aims to jointly optimize shape, materials, and lighting from captured 2D images. Here lighting is an important part of achieving faithful light transport simulation. While the environment map is commonly used as the lighting model in inverse rendering, we show that its distant lighting assumption leads to spatial invariant lighting, which can be an inaccurate approximation in real-world inverse rendering. We propose to use NeRF as a spatially varying environment lighting model and build an inverse rendering pipeline using NeRF as the non-distant environment emitter. By comparing our method with the environment map on real and synthetic datasets, we show that our NeRF-based emitter models the scene lighting more accurately and leads to more accurate inverse rendering. Project page and video: https://nerfemitterpbir.github.io/.
GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation
Text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models has shown great promise but still suffers from inconsistent 3D geometric structures (Janus problems) and severe artifacts. The aforementioned problems mainly stem from 2D diffusion models lacking 3D awareness during the lifting. In this work, we present GeoDream, a novel method that incorporates explicit generalized 3D priors with 2D diffusion priors to enhance the capability of obtaining unambiguous 3D consistent geometric structures without sacrificing diversity or fidelity. Specifically, we first utilize a multi-view diffusion model to generate posed images and then construct cost volume from the predicted image, which serves as native 3D geometric priors, ensuring spatial consistency in 3D space. Subsequently, we further propose to harness 3D geometric priors to unlock the great potential of 3D awareness in 2D diffusion priors via a disentangled design. Notably, disentangling 2D and 3D priors allows us to refine 3D geometric priors further. We justify that the refined 3D geometric priors aid in the 3D-aware capability of 2D diffusion priors, which in turn provides superior guidance for the refinement of 3D geometric priors. Our numerical and visual comparisons demonstrate that GeoDream generates more 3D consistent textured meshes with high-resolution realistic renderings (i.e., 1024 times 1024) and adheres more closely to semantic coherence.
CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs
Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
3D-GOI: 3D GAN Omni-Inversion for Multifaceted and Multi-object Editing
The current GAN inversion methods typically can only edit the appearance and shape of a single object and background while overlooking spatial information. In this work, we propose a 3D editing framework, 3D-GOI, to enable multifaceted editing of affine information (scale, translation, and rotation) on multiple objects. 3D-GOI realizes the complex editing function by inverting the abundance of attribute codes (object shape/appearance/scale/rotation/translation, background shape/appearance, and camera pose) controlled by GIRAFFE, a renowned 3D GAN. Accurately inverting all the codes is challenging, 3D-GOI solves this challenge following three main steps. First, we segment the objects and the background in a multi-object image. Second, we use a custom Neural Inversion Encoder to obtain coarse codes of each object. Finally, we use a round-robin optimization algorithm to get precise codes to reconstruct the image. To the best of our knowledge, 3D-GOI is the first framework to enable multifaceted editing on multiple objects. Both qualitative and quantitative experiments demonstrate that 3D-GOI holds immense potential for flexible, multifaceted editing in complex multi-object scenes.Our project and code are released at https://3d-goi.github.io .
Rotation Equivariant CNNs for Digital Pathology
We propose a new model for digital pathology segmentation, based on the observation that histopathology images are inherently symmetric under rotation and reflection. Utilizing recent findings on rotation equivariant CNNs, the proposed model leverages these symmetries in a principled manner. We present a visual analysis showing improved stability on predictions, and demonstrate that exploiting rotation equivariance significantly improves tumor detection performance on a challenging lymph node metastases dataset. We further present a novel derived dataset to enable principled comparison of machine learning models, in combination with an initial benchmark. Through this dataset, the task of histopathology diagnosis becomes accessible as a challenging benchmark for fundamental machine learning research.
ReNoise: Real Image Inversion Through Iterative Noising
Recent advancements in text-guided diffusion models have unlocked powerful image manipulation capabilities. However, applying these methods to real images necessitates the inversion of the images into the domain of the pretrained diffusion model. Achieving faithful inversion remains a challenge, particularly for more recent models trained to generate images with a small number of denoising steps. In this work, we introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations. Building on reversing the diffusion sampling process, our method employs an iterative renoising mechanism at each inversion sampling step. This mechanism refines the approximation of a predicted point along the forward diffusion trajectory, by iteratively applying the pretrained diffusion model, and averaging these predictions. We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models. Through comprehensive evaluations and comparisons, we show its effectiveness in terms of both accuracy and speed. Furthermore, we confirm that our method preserves editability by demonstrating text-driven image editing on real images.
H2RBox-v2: Incorporating Symmetry for Boosting Horizontal Box Supervised Oriented Object Detection
With the rapidly increasing demand for oriented object detection, e.g. in autonomous driving and remote sensing, the recently proposed paradigm involving weakly-supervised detector H2RBox for learning rotated box (RBox) from the more readily-available horizontal box (HBox) has shown promise. This paper presents H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. Specifically, we propose to leverage the reflection symmetry via flip and rotate consistencies, using a weakly-supervised network branch similar to H2RBox, together with a novel self-supervised branch that learns orientations from the symmetry inherent in visual objects. The detector is further stabilized and enhanced by practical techniques to cope with peripheral issues e.g. angular periodicity. To our best knowledge, H2RBox-v2 is the first symmetry-aware self-supervised paradigm for oriented object detection. In particular, our method shows less susceptibility to low-quality annotation and insufficient training data compared to H2RBox. Specifically, H2RBox-v2 achieves very close performance to a rotation annotation trained counterpart -- Rotated FCOS: 1) DOTA-v1.0/1.5/2.0: 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%; 2) HRSC: 89.66% vs. 88.99%; 3) FAIR1M: 42.27% vs. 41.25%.
Equivariant Contrastive Learning
In state-of-the-art self-supervised learning (SSL) pre-training produces semantically good representations by encouraging them to be invariant under meaningful transformations prescribed from human knowledge. In fact, the property of invariance is a trivial instance of a broader class called equivariance, which can be intuitively understood as the property that representations transform according to the way the inputs transform. Here, we show that rather than using only invariance, pre-training that encourages non-trivial equivariance to some transformations, while maintaining invariance to other transformations, can be used to improve the semantic quality of representations. Specifically, we extend popular SSL methods to a more general framework which we name Equivariant Self-Supervised Learning (E-SSL). In E-SSL, a simple additional pre-training objective encourages equivariance by predicting the transformations applied to the input. We demonstrate E-SSL's effectiveness empirically on several popular computer vision benchmarks, e.g. improving SimCLR to 72.5% linear probe accuracy on ImageNet. Furthermore, we demonstrate usefulness of E-SSL for applications beyond computer vision; in particular, we show its utility on regression problems in photonics science. Our code, datasets and pre-trained models are available at https://github.com/rdangovs/essl to aid further research in E-SSL.
Geometric Clifford Algebra Networks
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the Pin(p,q,r) group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods.
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP) for computing gradients of neural networks on biological or analog neuromorphic substrates. Still, the algorithm requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently. Both requirements are challenging to implement in physical systems. Yet, whether and how weight asymmetry affects its applicability is unknown because, in practice, it may be masked by biases introduced through the finite nudge. To address this question, we study generalized EP, which can be formulated without weight symmetry, and analytically isolate the two sources of bias. For complex-differentiable non-symmetric networks, we show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral. In contrast, weight asymmetry introduces bias resulting in low task performance due to poor alignment of EP's neuronal error vectors compared to BP. To mitigate this issue, we present a new homeostatic objective that directly penalizes functional asymmetries of the Jacobian at the network's fixed point. This homeostatic objective dramatically improves the network's ability to solve complex tasks such as ImageNet 32x32. Our results lay the theoretical groundwork for studying and mitigating the adverse effects of imperfections of physical networks on learning algorithms that rely on the substrate's relaxation dynamics.
