Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLFM2 Technical Report
We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.
Token-Efficient Long Video Understanding for Multimodal LLMs
Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (Spatiotemporal TOken Reduction for Multimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to 8times and the decoding latency by 2.4-2.9times for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm
Exploiting Sparsity for Long Context Inference: Million Token Contexts on Commodity GPUs
There is growing demand for performing inference with hundreds of thousands of input tokens on trained transformer models. Inference at this extreme scale demands significant computational resources, hindering the application of transformers at long contexts on commodity (i.e not data center scale) hardware. To address the inference time costs associated with running self-attention based transformer language models on long contexts and enable their adoption on widely available hardware, we propose a tunable mechanism that reduces the cost of the forward pass by attending to only the most relevant tokens at every generation step using a top-k selection mechanism. We showcase the efficiency gains afforded by our method by performing inference on context windows up to 1M tokens using approximately 16GB of GPU RAM. Our experiments reveal that models are capable of handling the sparsity induced by the reduced number of keys and values. By attending to less than 2% of input tokens, we achieve over 95% of model performance on common benchmarks (RULER, AlpacaEval, and Open LLM Leaderboard).
LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
3D vision foundation models like Visual Geometry Grounded Transformer (VGGT) have advanced greatly in geometric perception. However, it is time-consuming and memory-intensive for long sequences, limiting application to large-scale scenes beyond hundreds of images. To address this, we propose LiteVGGT, achieving up to 10x speedup and substantial memory reduction, enabling efficient processing of 1000-image scenes. We derive two key insights for 3D reconstruction: (1) tokens from local image regions have inherent geometric correlations, leading to high similarity and computational redundancy; (2) token similarity across adjacent network layers remains stable, allowing for reusable merge decisions. Guided by these, we design a simple yet efficient strategy, dubbed geometry-aware cached token merging. We analyze each token's geometric importance, optimizing anchor token selection to better preserve key information for reconstruction. We also cache and reuse merge indices across layers, substantially reducing latency with minimal accuracy impact. This strategy retains VGGT's core performance, enabling efficient fine-tuning and FP8 quantization for further gains. Extensive experiments validate LiteVGGT's effectiveness, scalability, and robustness. Project page: https://garlicba.github.io/LiteVGGT/
BIMBA: Selective-Scan Compression for Long-Range Video Question Answering
Video Question Answering (VQA) in long videos poses the key challenge of extracting relevant information and modeling long-range dependencies from many redundant frames. The self-attention mechanism provides a general solution for sequence modeling, but it has a prohibitive cost when applied to a massive number of spatiotemporal tokens in long videos. Most prior methods rely on compression strategies to lower the computational cost, such as reducing the input length via sparse frame sampling or compressing the output sequence passed to the large language model (LLM) via space-time pooling. However, these naive approaches over-represent redundant information and often miss salient events or fast-occurring space-time patterns. In this work, we introduce BIMBA, an efficient state-space model to handle long-form videos. Our model leverages the selective scan algorithm to learn to effectively select critical information from high-dimensional video and transform it into a reduced token sequence for efficient LLM processing. Extensive experiments demonstrate that BIMBA achieves state-of-the-art accuracy on multiple long-form VQA benchmarks, including PerceptionTest, NExT-QA, EgoSchema, VNBench, LongVideoBench, and Video-MME. Code, and models are publicly available at https://sites.google.com/view/bimba-mllm.
Think on your Feet: Adaptive Thinking via Reinforcement Learning for Social Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current approaches. While existing methods either lack this kind of reasoning capability or enforce uniform long chain-of-thought reasoning across all scenarios, resulting in excessive token usage and inappropriate social simulation. In this paper, we propose Adaptive Mode Learning (AML) that strategically selects from four thinking modes (intuitive reaction rightarrow deep contemplation) based on real-time context. Our framework's core innovation, the Adaptive Mode Policy Optimization (AMPO) algorithm, introduces three key advancements over existing methods: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence tasks confirm that AML achieves 15.6% higher task performance than state-of-the-art methods. Notably, our method outperforms GRPO by 7.0% with 32.8% shorter reasoning chains. These results demonstrate that context-sensitive thinking mode selection, as implemented in AMPO, enables more human-like adaptive reasoning than GRPO's fixed-depth approach
Recurrent Attention-based Token Selection for Efficient Streaming Video-LLMs
Video Large Language Models (Video-LLMs) excel at understanding videos in-context, provided they have full access to the video when answering queries. However, these models face challenges in streaming scenarios where hour-long videos must be processed online, and questions need timely responses. In this work, we propose a training-free approach compatible with standard Video-LLMs, leveraging three key concepts: 1) LLM-informed selection of visual tokens to identify those that the LLM has attended to and contributed to its understanding of each short clip. Our attention-based selection allows us to discard up to ~95% of unimportant visual tokens with minimal performance loss; 2) Recurrent processing of past selected tokens to generate temporally coherent understanding of each processed clip; 3) Caption-based question answering for lightweight and accurate responses. Our method achieves state-of-the-art performance on streaming video benchmarks, striking a balance between efficiency and effectiveness.
DualToken-ViT: Position-aware Efficient Vision Transformer with Dual Token Fusion
Self-attention-based vision transformers (ViTs) have emerged as a highly competitive architecture in computer vision. Unlike convolutional neural networks (CNNs), ViTs are capable of global information sharing. With the development of various structures of ViTs, ViTs are increasingly advantageous for many vision tasks. However, the quadratic complexity of self-attention renders ViTs computationally intensive, and their lack of inductive biases of locality and translation equivariance demands larger model sizes compared to CNNs to effectively learn visual features. In this paper, we propose a light-weight and efficient vision transformer model called DualToken-ViT that leverages the advantages of CNNs and ViTs. DualToken-ViT effectively fuses the token with local information obtained by convolution-based structure and the token with global information obtained by self-attention-based structure to achieve an efficient attention structure. In addition, we use position-aware global tokens throughout all stages to enrich the global information, which further strengthening the effect of DualToken-ViT. Position-aware global tokens also contain the position information of the image, which makes our model better for vision tasks. We conducted extensive experiments on image classification, object detection and semantic segmentation tasks to demonstrate the effectiveness of DualToken-ViT. On the ImageNet-1K dataset, our models of different scales achieve accuracies of 75.4% and 79.4% with only 0.5G and 1.0G FLOPs, respectively, and our model with 1.0G FLOPs outperforms LightViT-T using global tokens by 0.7%.
Mixture of Scales: Memory-Efficient Token-Adaptive Binarization for Large Language Models
Binarization, which converts weight parameters to binary values, has emerged as an effective strategy to reduce the size of large language models (LLMs). However, typical binarization techniques significantly diminish linguistic effectiveness of LLMs. To address this issue, we introduce a novel binarization technique called Mixture of Scales (BinaryMoS). Unlike conventional methods, BinaryMoS employs multiple scaling experts for binary weights, dynamically merging these experts for each token to adaptively generate scaling factors. This token-adaptive approach boosts the representational power of binarized LLMs by enabling contextual adjustments to the values of binary weights. Moreover, because this adaptive process only involves the scaling factors rather than the entire weight matrix, BinaryMoS maintains compression efficiency similar to traditional static binarization methods. Our experimental results reveal that BinaryMoS surpasses conventional binarization techniques in various natural language processing tasks and even outperforms 2-bit quantization methods, all while maintaining similar model size to static binarization techniques.
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension. The code and pretrained checkpoints are available at https://github.com/laiguokun/Funnel-Transformer.
FlexSelect: Flexible Token Selection for Efficient Long Video Understanding
Long-form video understanding poses a significant challenge for video large language models (VideoLLMs) due to prohibitively high computational and memory demands. In this paper, we propose FlexSelect, a flexible and efficient token selection strategy for processing long videos. FlexSelect identifies and retains the most semantically relevant content by leveraging cross-modal attention patterns from a reference transformer layer. It comprises two key components: (1) a training-free token ranking pipeline that leverages faithful cross-modal attention weights to estimate each video token's importance, and (2) a rank-supervised lightweight selector that is trained to replicate these rankings and filter redundant tokens. This generic approach can be seamlessly integrated into various VideoLLM architectures, such as LLaVA-Video, InternVL and Qwen-VL, serving as a plug-and-play module to extend their temporal context length. Empirically, FlexSelect delivers strong gains across multiple long-video benchmarks including VideoMME, MLVU, LongVB, and LVBench. Moreover, it achieves significant speed-ups (for example, up to 9 times on a LLaVA-Video-7B model), highlighting FlexSelect's promise for efficient long-form video understanding. Project page available at: https://yunzhuzhang0918.github.io/flex_select
VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.
MrT5: Dynamic Token Merging for Efficient Byte-level Language Models
Models that rely on subword tokenization have significant drawbacks, such as sensitivity to character-level noise like spelling errors and inconsistent compression rates across different languages and scripts. While character- or byte-level models like ByT5 attempt to address these concerns, they have not gained widespread adoption -- processing raw byte streams without tokenization results in significantly longer sequence lengths, making training and inference inefficient. This work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that integrates a token deletion mechanism in its encoder to dynamically shorten the input sequence length. After processing through a fixed number of encoder layers, a learnt delete gate determines which tokens are to be removed and which are to be retained for subsequent layers. MrT5 effectively ``merges'' critical information from deleted tokens into a more compact sequence, leveraging contextual information from the remaining tokens. In continued pre-training experiments, we find that MrT5 can achieve significant gains in inference runtime with minimal effect on performance. When trained on English text, MrT5 demonstrates the capability to transfer its deletion feature zero-shot across several languages, with significant additional improvements following multilingual training. Furthermore, MrT5 shows comparable accuracy to ByT5 on downstream evaluations such as XNLI and character-level tasks while reducing sequence lengths by up to 80%. Our approach presents a solution to the practical limitations of existing byte-level models.
HiRED: Attention-Guided Token Dropping for Efficient Inference of High-Resolution Vision-Language Models in Resource-Constrained Environments
High-resolution Vision-Language Models (VLMs) have been widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate excessive visual tokens due to encoding multiple partitions of the input image. Processing these excessive visual tokens is computationally challenging, especially in resource-constrained environments with commodity GPUs. To support high-resolution images while meeting resource constraints, we propose High-Resolution Early Dropping (HiRED), a token-dropping scheme that operates within a fixed token budget before the Large Language Model (LLM) stage. HiRED can be integrated with existing high-resolution VLMs in a plug-and-play manner, as it requires no additional training while still maintaining superior accuracy. We strategically use the vision encoder's attention in the initial layers to assess the visual content of each image partition and allocate the token budget accordingly. Then, using the attention in the final layer, we select the most important visual tokens from each partition within the allocated budget, dropping the rest. Empirically, when applied to LLaVA-Next-7B on NVIDIA TESLA P40 GPU, HiRED with a 20% token budget increases token generation throughput by 4.7, reduces first-token generation latency by 15 seconds, and saves 2.3 GB of GPU memory for a single inference.
METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
Index-Preserving Lightweight Token Pruning for Efficient Document Understanding in Vision-Language Models
Recent progress in vision-language models (VLMs) has led to impressive results in document understanding tasks, but their high computational demands remain a challenge. To mitigate the compute burdens, we propose a lightweight token pruning framework that filters out non-informative background regions from document images prior to VLM processing. A binary patch-level classifier removes non-text areas, and a max-pooling refinement step recovers fragmented text regions to enhance spatial coherence. Experiments on real-world document datasets demonstrate that our approach substantially lowers computational costs, while maintaining comparable accuracy.
VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
Scaling Context, Not Parameters: Training a Compact 7B Language Model for Efficient Long-Context Processing
We present MegaBeam-Mistral-7B, a language model that supports 512K-token context length. Our work addresses practical limitations in long-context training, supporting real-world tasks such as compliance monitoring and verification. Evaluated on three long-context benchmarks, our 7B-parameter model demonstrates superior in-context learning performance on HELMET and robust retrieval and tracing capability on RULER. It is currently the only open model to achieve competitive long-range reasoning on BABILong at 512K context length without RAG or targeted fine-tuning. Released as fully open source under the Apache 2.0 license, the model has been downloaded over 100,000 times on Hugging Face. Model available at: https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k
UniMIC: Token-Based Multimodal Interactive Coding for Human-AI Collaboration
The rapid progress of Large Multimodal Models (LMMs) and cloud-based AI agents is transforming human-AI collaboration into bidirectional, multimodal interaction. However, existing codecs remain optimized for unimodal, one-way communication, resulting in repeated degradation under conventional compress-transmit-reconstruct pipelines. To address this limitation, we propose UniMIC, a Unified token-based Multimodal Interactive Coding framework that bridges edge devices and cloud AI agents. Instead of transmitting raw pixels or plain text, UniMIC employs compact tokenized representations as the communication medium, enabling efficient low-bitrate transmission while maintaining compatibility with LMMs. To further enhance compression, lightweight Transformer-based entropy models with scenario-specific designs-generic, masked, and text-conditioned-effectively minimize inter-token redundancy. Extensive experiments on text-to-image generation, text-guided inpainting, outpainting, and visual question answering show that UniMIC achieves substantial bitrate savings and remains robust even at ultra-low bitrates (<0.05bpp), without compromising downstream task performance. These results establish UniMIC as a practical and forward-looking paradigm for next-generation multimodal interactive communication.
Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding
Cropping high-resolution document images into multiple sub-images is the most widely used approach for current Multimodal Large Language Models (MLLMs) to do document understanding. Most of current document understanding methods preserve all tokens within sub-images and treat them equally. This neglects their different informativeness and leads to a significant increase in the number of image tokens. To perform a more adaptive and efficient document understanding, we propose Token-level Correlation-guided Compression, a parameter-free and plug-and-play methodology to optimize token processing. Firstly, we propose an innovative approach for assessing the pattern repetitiveness based on the correlation between each patch tokens. This method identifies redundant tokens, allowing for the determination of the sub-image's information density. Secondly, we present a token-level sampling method that efficiently captures the most informative tokens by delving into the correlation between the [CLS] token and patch tokens. By integrating these strategies, we develop a plug-and-play adaptive compressor module that can be seamlessly incorporated into MLLMs utilizing cropping techniques. This module not only enhances the processing speed during training and inference but also maintains comparable performance. We conduct experiments with the SOTA document understanding model mPLUG-DocOwl1.5 and the effectiveness is demonstrated through extensive comparisons with other compression methods.
Token Sequence Compression for Efficient Multimodal Computing
The exponential growth of Large Multimodal Models (LMMs) has driven advancements in cross-modal reasoning but at significant computational costs. In this work, we focus on visual language models. We highlight the redundancy and inefficiency in current vision encoders, and seek to construct an adaptive compression method for multimodal data. In this work, we characterize a panoply of visual token selection and merging approaches through both benchmarking and qualitative analysis. In particular, we demonstrate that simple cluster-level token aggregation outperforms prior state-of-the-art works in token selection and merging, including merging at the vision encoder level and attention-based approaches. We underline the redundancy in current vision encoders, and shed light on several puzzling trends regarding principles of visual token selection through cross-modal attention visualizations. This work is a first effort towards more effective encoding and processing of high-dimensional data, and paves the way for more scalable and sustainable multimodal systems.
SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning
The attention mechanism is becoming increasingly popular in Natural Language Processing (NLP) applications, showing superior performance than convolutional and recurrent architectures. However, attention becomes the compution bottleneck because of its quadratic computational complexity to input length, complicated data movement and low arithmetic intensity. Moreover, existing NN accelerators mainly focus on optimizing convolutional or recurrent models, and cannot efficiently support attention. In this paper, we present SpAtten, an efficient algorithm-architecture co-design that leverages token sparsity, head sparsity, and quantization opportunities to reduce the attention computation and memory access. Inspired by the high redundancy of human languages, we propose the novel cascade token pruning to prune away unimportant tokens in the sentence. We also propose cascade head pruning to remove unessential heads. Cascade pruning is fundamentally different from weight pruning since there is no trainable weight in the attention mechanism, and the pruned tokens and heads are selected on the fly. To efficiently support them on hardware, we design a novel top-k engine to rank token and head importance scores with high throughput. Furthermore, we propose progressive quantization that first fetches MSBs only and performs the computation; if the confidence is low, it fetches LSBs and recomputes the attention outputs, trading computation for memory reduction. Extensive experiments on 30 benchmarks show that, on average, SpAtten reduces DRAM access by 10.0x with no accuracy loss, and achieves 1.6x, 3.0x, 162x, 347x speedup, and 1,4x, 3.2x, 1193x, 4059x energy savings over A3 accelerator, MNNFast accelerator, TITAN Xp GPU, Xeon CPU, respectively.
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.
PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference
As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall 1% to 5% performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.
Efficient Multi-modal Large Language Models via Visual Token Grouping
The development of Multi-modal Large Language Models (MLLMs) enhances Large Language Models (LLMs) with the ability to perceive data formats beyond text, significantly advancing a range of downstream applications, such as visual question answering and image captioning. However, the substantial computational costs associated with processing high-resolution images and videos pose a barrier to their broader adoption. To address this challenge, compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs. While existing methods conduct token reduction in the feature alignment phase. In this paper, we introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments without the need for segmentation masks. Specifically, we concatenate semantic tokens to represent image semantic segments after the linear projection layer before feeding into the vision encoder. Besides, with the isolated attention we adopt, VisToG can identify and eliminate redundant visual tokens utilizing the prior knowledge in the pre-trained vision encoder, which effectively reduces computational demands. Extensive experiments demonstrate the effectiveness of VisToG, maintaining 98.1% of the original performance while achieving a reduction of over 27\% inference time.
Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance
Large language models (LLMs) are known for their exceptional performance across a range of natural language processing tasks, but their deployment comes at a high computational and financial cost. On the other hand, smaller language models (SLMs), which can be deployed on lower-cost edge devices, struggle to match the performance of their larger counterparts. This paper presents a novel hybrid inference approach that leverages the strengths of both model types while minimizing reliance on costly cloud-based LLMs. Unlike existing methods that route entire queries to either an SLM or a cloud LLM, our approach introduces a reward-based mechanism to dynamically determine the involvement of the cloud LLM during token generation. Specifically, each token predicted by the SLM is evaluated against a reward score, and only when this score falls below a certain threshold is the cloud LLM consulted for assistance in the next token prediction. This method not only reduces the traffic to the cloud LLM, thereby lowering costs, but also allows for flexible control over response quality depending on the reward score threshold. Experimental results demonstrate that our approach significantly reduces cloud LLM usage with minimal impact on overall response quality, offering a cost-effective solution for deploying high-performance language models
VASparse: Towards Efficient Visual Hallucination Mitigation via Visual-Aware Token Sparsification
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.
Pruning the Unsurprising: Efficient Code Reasoning via First-Token Surprisal
Recently, Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in code reasoning by scaling up the length of Chain-of-Thought (CoT). However, excessively long reasoning traces introduce substantial challenges in terms of training cost, inference latency, and deployment feasibility. While various CoT compression approaches have emerged to address this challenge, they face inherent trade-offs: token-level methods often disrupt syntactic and logical coherence, while step-level methods based on perplexity fail to reliably capture the logically critical reasoning steps. In this paper, we propose ASAP (Anchor-guided, Surprisal-based Pruning), a novel coarse-to-fine framework for CoT compression. ASAP first performs anchor-guided pruning to preserve the core reasoning structure, which efficiently reduces the search space for subsequent processing. It then enables a logic-aware pruning by selecting logically essential reasoning steps based on a novel first-token surprisal metric. Finally, ASAP teaches models to autonomously generate and leverage these concise CoTs at inference time, enabling efficient reasoning in coding tasks. Experiments show that ASAP achieves state-of-the-art accuracy across multiple code generation benchmarks while substantially reducing training and inference costs. On the challenging LiveCodeBench v4_v5 benchmark, our approach reduces token generation by 23.5% and inference latency by 43.5% compared to the strongest baseline, while achieving a competitive accuracy of 36.19% in Pass@1. Our results highlight a promising direction for building powerful and efficient LRMs.
MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
DocVLM: Make Your VLM an Efficient Reader
Vision-Language Models (VLMs) excel in diverse visual tasks but face challenges in document understanding, which requires fine-grained text processing. While typical visual tasks perform well with low-resolution inputs, reading-intensive applications demand high-resolution, resulting in significant computational overhead. Using OCR-extracted text in VLM prompts partially addresses this issue but underperforms compared to full-resolution counterpart, as it lacks the complete visual context needed for optimal performance. We introduce DocVLM, a method that integrates an OCR-based modality into VLMs to enhance document processing while preserving original weights. Our approach employs an OCR encoder to capture textual content and layout, compressing these into a compact set of learned queries incorporated into the VLM. Comprehensive evaluations across leading VLMs show that DocVLM significantly reduces reliance on high-resolution images for document understanding. In limited-token regimes (448times448), DocVLM with 64 learned queries improves DocVQA results from 56.0% to 86.6% when integrated with InternVL2 and from 84.4% to 91.2% with Qwen2-VL. In LLaVA-OneVision, DocVLM achieves improved results while using 80% less image tokens. The reduced token usage allows processing multiple pages effectively, showing impressive zero-shot results on DUDE and state-of-the-art performance on MP-DocVQA, highlighting DocVLM's potential for applications requiring high-performance and efficiency.
MoMa: Efficient Early-Fusion Pre-training with Mixture of Modality-Aware Experts
We introduce MoMa, a novel modality-aware mixture-of-experts (MoE) architecture designed for pre-training mixed-modal, early-fusion language models. MoMa processes images and text in arbitrary sequences by dividing expert modules into modality-specific groups. These groups exclusively process designated tokens while employing learned routing within each group to maintain semantically informed adaptivity. Our empirical results reveal substantial pre-training efficiency gains through this modality-specific parameter allocation. Under a 1-trillion-token training budget, the MoMa 1.4B model, featuring 4 text experts and 4 image experts, achieves impressive FLOPs savings: 3.7x overall, with 2.6x for text and 5.2x for image processing compared to a compute-equivalent dense baseline, measured by pre-training loss. This outperforms the standard expert-choice MoE with 8 mixed-modal experts, which achieves 3x overall FLOPs savings (3x for text, 2.8x for image). Combining MoMa with mixture-of-depths (MoD) further improves pre-training FLOPs savings to 4.2x overall (text: 3.4x, image: 5.3x), although this combination hurts performance in causal inference due to increased sensitivity to router accuracy. These results demonstrate MoMa's potential to significantly advance the efficiency of mixed-modal, early-fusion language model pre-training, paving the way for more resource-efficient and capable multimodal AI systems.
E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling
Recent advances in autoregressive (AR) models with continuous tokens for image generation show promising results by eliminating the need for discrete tokenization. However, these models face efficiency challenges due to their sequential token generation nature and reliance on computationally intensive diffusion-based sampling. We present ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling), an approach that addresses these limitations through two intertwined innovations: (1) a stage-wise continuous token generation strategy that reduces computational complexity and provides progressively refined token maps as hierarchical conditions, and (2) a multistage flow-based distribution modeling method that transforms only partial-denoised distributions at each stage comparing to complete denoising in normal diffusion models. Holistically, ECAR operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage. This design not only reduces token-to-image transformation cost by a factor of the stage number but also enables parallel processing at the token level. Our approach not only enhances computational efficiency but also aligns naturally with image generation principles by operating in continuous token space and following a hierarchical generation process from coarse to fine details. Experimental results demonstrate that ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10times FLOPs reduction and 5times speedup to generate a 256times256 image.
VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation
A well-known dilemma in large vision-language models (e.g., GPT-4, LLaVA) is that while increasing the number of vision tokens generally enhances visual understanding, it also significantly raises memory and computational costs, especially in long-term, dense video frame streaming scenarios. Although learnable approaches like Q-Former and Perceiver Resampler have been developed to reduce the vision token burden, they overlook the context causally modeled by LLMs (i.e., key-value cache), potentially leading to missed visual cues when addressing user queries. In this paper, we introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens. Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video. Specifically, for each transformer layer, we learn to skip the computation for a high proportion (e.g., 80\%) of vision tokens, passing them directly to the next layer. This approach significantly enhances model efficiency, achieving approximately \textasciitilde42\% time and \textasciitilde30\% memory savings for the entire training. Moreover, our method reduces the computation in the context and avoid decreasing the vision tokens, thus preserving or even improving performance compared to the vanilla model. We conduct extensive experiments to demonstrate the effectiveness of VideoLLM-MoD, showing its state-of-the-art results on multiple benchmarks, including narration, forecasting, and summarization tasks in COIN, Ego4D, and Ego-Exo4D datasets.
BUS:Efficient and Effective Vision-language Pre-training with Bottom-Up Patch Summarization
Vision Transformer (ViT) based Vision-Language Pre-training (VLP) models have demonstrated impressive performance in various tasks. However, the lengthy visual token sequences fed into ViT can lead to training inefficiency and ineffectiveness. Existing efforts address the challenge by either bottom-level patch extraction in the ViT backbone or top-level patch abstraction outside, not balancing training efficiency and effectiveness well. Inspired by text summarization in natural language processing, we propose a Bottom-Up Patch Summarization approach named BUS, coordinating bottom-level extraction and top-level abstraction to learn a concise summary of lengthy visual token sequences efficiently. Specifically, We incorporate a Text-Semantics-Aware Patch Selector (TSPS) into the ViT backbone to perform a coarse-grained visual token extraction and then attach a flexible Transformer-based Patch Abstraction Decoder (PAD) upon the backbone for top-level visual abstraction. This bottom-up collaboration enables our BUS to yield high training efficiency while maintaining or even improving effectiveness. We evaluate our approach on various visual-language understanding and generation tasks and show competitive downstream task performance while boosting the training efficiency by 50\%. Additionally, our model achieves state-of-the-art performance on many downstream tasks by increasing input image resolution without increasing computational costs over baselines.
Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference
Autoregressive models, despite their commendable performance in a myriad of generative tasks, face challenges stemming from their inherently sequential structure. Inference on these models, by design, harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens. This inherent characteristic severely impedes computational efficiency during inference as a typical inference request can require more than thousands of tokens, where generating each token requires a load of entire model weights, making the inference more memory-bound. The large overhead becomes profound in real deployment where requests arrive randomly, necessitating various generation lengths. Existing solutions, such as dynamic batching and concurrent instances, introduce significant response delays and bandwidth contention, falling short of achieving optimal latency and throughput. To address these shortcomings, we propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel. We deconstruct the general generation pipeline into pre-processing and token generation, and equip the framework with a dedicated work scheduler for fusing the generation process temporally across all requests. By orchestrating the token-level parallelism, Flover exhibits optimal hardware efficiency and significantly spares the system resources. By further employing a fast buffer reordering algorithm that allows memory eviction of finished tasks, it brings over 11x inference speedup on GPT and 16x on LLAMA compared to the cutting-edge solutions provided by NVIDIA FasterTransformer. Crucially, by leveraging the advanced tensor parallel technique, Flover proves efficacious across diverse computational landscapes, from single-GPU setups to distributed scenarios, thereby offering robust performance optimization that adapts to variable use cases.
Efficient Long-context Language Model Training by Core Attention Disaggregation
We present core attention disaggregation (CAD), a technique that improves long-context large language model training by decoupling the core attention computation, softmax(QK^T)V, from the rest of the model and executing it on a separate pool of devices. In existing systems, core attention is colocated with other layers; at long context lengths, its quadratic compute growth compared to the near-linear growth of other components causes load imbalance and stragglers across data and pipeline parallel groups. CAD is enabled by two observations. First, core attention is stateless: it has no trainable parameters and only minimal transient data, so balancing reduces to scheduling compute-bound tasks. Second, it is composable: modern attention kernels retain high efficiency when processing fused batches of token-level shards with arbitrary lengths. CAD partitions core attention into token-level tasks and dispatches them to dedicated attention servers, which dynamically rebatch tasks to equalize compute without sacrificing kernel efficiency. We implement CAD in a system called DistCA, which uses a ping-pong execution scheme to fully overlap communication with computation and in-place execution on attention servers to reduce memory use. On 512 H200 GPUs and context lengths up to 512k tokens, DistCA improves end-to-end training throughput by up to 1.35x, eliminates data and pipeline parallel stragglers, and achieves near-perfect compute and memory balance.
ResidualViT for Efficient Temporally Dense Video Encoding
Several video understanding tasks, such as natural language temporal video grounding, temporal activity localization, and audio description generation, require "temporally dense" reasoning over frames sampled at high temporal resolution. However, computing frame-level features for these tasks is computationally expensive given the temporal resolution requirements. In this paper, we make three contributions to reduce the cost of computing features for temporally dense tasks. First, we introduce a vision transformer (ViT) architecture, dubbed ResidualViT, that leverages the large temporal redundancy in videos to efficiently compute temporally dense frame-level features. Our architecture incorporates (i) learnable residual connections that ensure temporal consistency across consecutive frames and (ii) a token reduction module that enhances processing speed by selectively discarding temporally redundant information while reusing weights of a pretrained foundation model. Second, we propose a lightweight distillation strategy to approximate the frame-level features of the original foundation model. Finally, we evaluate our approach across four tasks and five datasets, in both zero-shot and fully supervised settings, demonstrating significant reductions in computational cost (up to 60%) and improvements in inference speed (up to 2.5x faster), all while closely approximating the accuracy of the original foundation model.
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference
The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.
Learning Compact Vision Tokens for Efficient Large Multimodal Models
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only 25% vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference
Transformers have emerged as the underpinning architecture for Large Language Models (LLMs). In generative language models, the inference process involves two primary phases: prompt processing and token generation. Token generation, which constitutes the majority of the computational workload, primarily entails vector-matrix multiplications and interactions with the Key-Value (KV) Cache. This phase is constrained by memory bandwidth due to the overhead of transferring weights and KV cache values from the memory system to the computing units. This memory bottleneck becomes particularly pronounced in applications that require long-context and extensive text generation, both of which are increasingly crucial for LLMs. This paper introduces "Keyformer", an innovative inference-time approach, to mitigate the challenges associated with KV cache size and memory bandwidth utilization. Keyformer leverages the observation that approximately 90% of the attention weight in generative inference focuses on a specific subset of tokens, referred to as "key" tokens. Keyformer retains only the key tokens in the KV cache by identifying these crucial tokens using a novel score function. This approach effectively reduces both the KV cache size and memory bandwidth usage without compromising model accuracy. We evaluate Keyformer's performance across three foundational models: GPT-J, Cerebras-GPT, and MPT, which employ various positional embedding algorithms. Our assessment encompasses a variety of tasks, with a particular emphasis on summarization and conversation tasks involving extended contexts. Keyformer's reduction of KV cache reduces inference latency by 2.1x and improves token generation throughput by 2.4x, while preserving the model's accuracy.
RIFormer: Keep Your Vision Backbone Effective While Removing Token Mixer
This paper studies how to keep a vision backbone effective while removing token mixers in its basic building blocks. Token mixers, as self-attention for vision transformers (ViTs), are intended to perform information communication between different spatial tokens but suffer from considerable computational cost and latency. However, directly removing them will lead to an incomplete model structure prior, and thus brings a significant accuracy drop. To this end, we first develop an RepIdentityFormer base on the re-parameterizing idea, to study the token mixer free model architecture. And we then explore the improved learning paradigm to break the limitation of simple token mixer free backbone, and summarize the empirical practice into 5 guidelines. Equipped with the proposed optimization strategy, we are able to build an extremely simple vision backbone with encouraging performance, while enjoying the high efficiency during inference. Extensive experiments and ablative analysis also demonstrate that the inductive bias of network architecture, can be incorporated into simple network structure with appropriate optimization strategy. We hope this work can serve as a starting point for the exploration of optimization-driven efficient network design. Project page: https://techmonsterwang.github.io/RIFormer/.
Less Is More: Training-Free Sparse Attention with Global Locality for Efficient Reasoning
Large reasoning models achieve strong performance through test-time scaling but incur substantial computational overhead, particularly from excessive token generation when processing short input prompts. While sparse attention mechanisms can reduce latency and memory usage, existing approaches suffer from significant accuracy degradation due to accumulated errors during long-generation reasoning. These methods generally require either high token retention rates or expensive retraining. We introduce LessIsMore, a training-free sparse attention mechanism for reasoning tasks, which leverages global attention patterns rather than relying on traditional head-specific local optimizations. LessIsMore aggregates token selections from local attention heads with recent contextual information, enabling unified cross-head token ranking for future decoding layers. This unified selection improves generalization and efficiency by avoiding the need to maintain separate token subsets per head. Evaluation across diverse reasoning tasks and benchmarks shows that LessIsMore preserves -- and in some cases improves -- accuracy while achieving a 1.1times average decoding speed-up compared to full attention. Moreover, LessIsMore attends to 2times fewer tokens without accuracy loss, achieving a 1.13times end-to-end speed-up compared to existing sparse attention methods.
InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU
In modern large language models (LLMs), handling very long context lengths presents significant challenges as it causes slower inference speeds and increased memory costs. Additionally, most existing pre-trained LLMs fail to generalize beyond their original training sequence lengths. To enable efficient and practical long-context utilization, we introduce InfiniteHiP, a novel, and practical LLM inference framework that accelerates processing by dynamically eliminating irrelevant context tokens through a modular hierarchical token pruning algorithm. Our method also allows generalization to longer sequences by selectively applying various RoPE adjustment methods according to the internal attention patterns within LLMs. Furthermore, we offload the key-value cache to host memory during inference, significantly reducing GPU memory pressure. As a result, InfiniteHiP enables the processing of up to 3 million tokens on a single L40s 48GB GPU -- 3x larger -- without any permanent loss of context information. Our framework achieves an 18.95x speedup in attention decoding for a 1 million token context without requiring additional training. We implement our method in the SGLang framework and demonstrate its effectiveness and practicality through extensive evaluations.
PIM-GPT: A Hybrid Process-in-Memory Accelerator for Autoregressive Transformers
Decoder-only Transformer models such as GPT have demonstrated superior performance in text generation, by autoregressively predicting the next token. However, the performance of GPT is bounded by low compute-to-memory-ratio and high memory access. Throughput-oriented architectures such as GPUs target parallel processing rather than sequential token generation, and are not efficient for GPT acceleration, particularly on-device inference applications. Process-in-memory (PIM) architectures can significantly reduce data movement and provide high computation parallelism, and are promising candidates to accelerate GPT inference. In this work, we propose PIM-GPT that aims to achieve high throughput, high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, greatly reducing data movement. A compact application-specific integrated chip (ASIC) is designed and synthesized to initiate instructions to PIM chips and support data communication along with necessary arithmetic computations. At the software level, the mapping scheme is designed to maximize data locality and computation parallelism by partitioning a matrix among DRAM channels and banks to utilize all in-bank computation resources concurrently. We develop an event-driven clock-cycle accurate simulator to validate the efficacy of the proposed PIM-GPT architecture. Overall, PIM-GPT achieves 41-137times, 631-1074times speedup and 339-1085times, 890-1632times energy efficiency over GPU and CPU baseline, respectively, on 8 GPT models with up to 1.4 billion parameters.
The Future of AI: Exploring the Potential of Large Concept Models
The field of Artificial Intelligence (AI) continues to drive transformative innovations, with significant progress in conversational interfaces, autonomous vehicles, and intelligent content creation. Since the launch of ChatGPT in late 2022, the rise of Generative AI has marked a pivotal era, with the term Large Language Models (LLMs) becoming a ubiquitous part of daily life. LLMs have demonstrated exceptional capabilities in tasks such as text summarization, code generation, and creative writing. However, these models are inherently limited by their token-level processing, which restricts their ability to perform abstract reasoning, conceptual understanding, and efficient generation of long-form content. To address these limitations, Meta has introduced Large Concept Models (LCMs), representing a significant shift from traditional token-based frameworks. LCMs use concepts as foundational units of understanding, enabling more sophisticated semantic reasoning and context-aware decision-making. Given the limited academic research on this emerging technology, our study aims to bridge the knowledge gap by collecting, analyzing, and synthesizing existing grey literature to provide a comprehensive understanding of LCMs. Specifically, we (i) identify and describe the features that distinguish LCMs from LLMs, (ii) explore potential applications of LCMs across multiple domains, and (iii) propose future research directions and practical strategies to advance LCM development and adoption.
Fcaformer: Forward Cross Attention in Hybrid Vision Transformer
Currently, one main research line in designing a more efficient vision transformer is reducing the computational cost of self attention modules by adopting sparse attention or using local attention windows. In contrast, we propose a different approach that aims to improve the performance of transformer-based architectures by densifying the attention pattern. Specifically, we proposed forward cross attention for hybrid vision transformer (FcaFormer), where tokens from previous blocks in the same stage are secondary used. To achieve this, the FcaFormer leverages two innovative components: learnable scale factors (LSFs) and a token merge and enhancement module (TME). The LSFs enable efficient processing of cross tokens, while the TME generates representative cross tokens. By integrating these components, the proposed FcaFormer enhances the interactions of tokens across blocks with potentially different semantics, and encourages more information flows to the lower levels. Based on the forward cross attention (Fca), we have designed a series of FcaFormer models that achieve the best trade-off between model size, computational cost, memory cost, and accuracy. For example, without the need for knowledge distillation to strengthen training, our FcaFormer achieves 83.1% top-1 accuracy on Imagenet with only 16.3 million parameters and about 3.6 billion MACs. This saves almost half of the parameters and a few computational costs while achieving 0.7% higher accuracy compared to distilled EfficientFormer.
Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent
A multimodal AI agent is characterized by its ability to process and learn from various types of data, including natural language, visual, and audio inputs, to inform its actions. Despite advancements in large language models that incorporate visual data, such as GPT-4V, effectively translating image-based data into actionable outcomes for AI agents continues to be challenging. In this paper, we introduce a multimodal model that incorporates the concept of functional token specifically designed for AI agent applications. To ensure compatibility with edge devices, our model is optimized to a compact size of less than 1B parameters. Like GPT-4, our model can process both English and Chinese. We demonstrate that this model is capable of operating efficiently on a wide range of edge devices, including as constrained as a Raspberry Pi.
XCiT: Cross-Covariance Image Transformers
Following their success in natural language processing, transformers have recently shown much promise for computer vision. The self-attention operation underlying transformers yields global interactions between all tokens ,i.e. words or image patches, and enables flexible modelling of image data beyond the local interactions of convolutions. This flexibility, however, comes with a quadratic complexity in time and memory, hindering application to long sequences and high-resolution images. We propose a "transposed" version of self-attention that operates across feature channels rather than tokens, where the interactions are based on the cross-covariance matrix between keys and queries. The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images. Our cross-covariance image transformer (XCiT) is built upon XCA. It combines the accuracy of conventional transformers with the scalability of convolutional architectures. We validate the effectiveness and generality of XCiT by reporting excellent results on multiple vision benchmarks, including image classification and self-supervised feature learning on ImageNet-1k, object detection and instance segmentation on COCO, and semantic segmentation on ADE20k.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Knowing When to Stop: Dynamic Context Cutoff for Large Language Models
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient in cases where the information required to answer a query is localized within the context. We present dynamic context cutoff, a human-inspired method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" - detectable through lightweight classifiers - that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B0-70B) demonstrate 1.33x average token reduction while improving accuracy by 1.3%. Furthermore, our method demonstrates better performance with the same rate of token reduction compared to other context efficiency methods. Additionally, we observe an emergent scaling phenomenon: while smaller models require require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
dots.llm1 Technical Report
Mixture of Experts (MoE) models have emerged as a promising paradigm for scaling language models efficiently by activating only a subset of parameters for each input token. In this report, we present dots.llm1, a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B after pretraining on 11.2T high-quality tokens and post-training to fully unlock its capabilities. Notably, no synthetic data is used during pretraining. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
Vision-centric Token Compression in Large Language Model
Large Language Models (LLMs) have revolutionized natural language processing, excelling in handling longer sequences. However, the inefficiency and redundancy in processing extended in-context tokens remain a challenge. Many attempts to address this rely on compressing tokens with smaller text encoders, yet we question whether text encoders are truly indispensable. Our journey leads to an unexpected discovery-a much smaller vision encoder, applied directly to sequences of text tokens, can rival text encoders on text tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small text understanding benchmarks, VIST leads to comparable results with 16% fewer FLOPs and 50% less memory usage. We further uncover significant token redundancy and devise a frequency-based masking strategy to guide the focus of the visual encoder toward the most critical tokens. Interestingly, we observe the trained visual encoder performs like a summarizer, selectively ignoring less important words such as prepositions and conjunctions. This approach delivers remarkable results, outperforming traditional text encoder-based methods by 5.7% on average over benchmarks like TriviaQA, NQ, PopQA, TREF, SST2, and SST5, setting a new standard for token efficiency in LLMs.
Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models
Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget, leading to inefficient resource utilization. To address this shortcoming, recent advancements in mixture of expert (MoE) models, speculative decoding, and early exit strategies leverage the insight that computational demands can vary significantly based on the complexity and nature of the input. However, identifying optimal routing patterns for dynamic execution remains an open challenge, limiting the full potential of these adaptive methods. To address this need, we study adaptive computation in LLMs more systematically. We propose a novel framework that integrates smaller auxiliary modules within each Feed-Forward Network layer of the LLM. This design enables dynamic routing of tokens based on task complexity: tokens can be processed by either the small or big modules at each layer, or even bypass certain layers entirely. This allows us to introduce a novel notion of a token's difficulty, defined by its potential to benefit from additional computational resources. Importantly, by employing oracles to identify optimal patterns of adaptive computations, we gain valuable insights into the internal workings of LLMs and the routing processes in a simplified heterogeneous MoE setup. We show that trained routers operate differently from oracles and often yield suboptimal solutions. Notably, activating a large module in just one layer outperforms models that use large modules across all layers, underscoring the gap between practical implementations of routing in MoE models and theoretical optima for adaptive computation.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves 35% KV cache without compromising the performance.
Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 50% and 27% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
Tokenization Constraints in LLMs: A Study of Symbolic and Arithmetic Reasoning Limits
Tokenization is the first - and often underappreciated - layer of computation in language models. While Chain-of-Thought (CoT) prompting enables transformer models to approximate recurrent computation by externalizing intermediate steps, we show that the success of such reasoning is fundamentally bounded by the structure of tokenized inputs. This work presents a theoretical and empirical investigation into how tokenization schemes, particularly subword-based methods like byte-pair encoding (BPE), impede symbolic computation by merging or obscuring atomic reasoning units. We introduce the notion of Token Awareness to formalize how poor token granularity disrupts logical alignment and prevents models from generalizing symbolic procedures. Through systematic evaluation on arithmetic and symbolic tasks, we demonstrate that token structure dramatically affect reasoning performance, causing failure even with CoT, while atomically-aligned formats unlock strong generalization, allowing small models (e.g., GPT-4o-mini) to outperform larger systems (e.g., o1) in structured reasoning. Our findings reveal that symbolic reasoning ability in LLMs is not purely architectural, but deeply conditioned on token-level representations.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
Tokenization Is More Than Compression
Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available.
Long-Range Tasks Using Short-Context LLMs: Incremental Reasoning With Structured Memories
Long-range tasks require reasoning over long inputs. Existing solutions either need large compute budgets, training data, access to model weights, or use complex, task-specific approaches. We present PRISM, which alleviates these concerns by processing information as a stream of chunks, maintaining a structured in-context memory specified by a typed hierarchy schema. This approach demonstrates superior performance to baselines on diverse tasks while using at least 4x smaller contexts than long-context models. Moreover, PRISM is token-efficient. By producing short outputs and efficiently leveraging key-value (KV) caches, it achieves up to 54% cost reduction when compared to alternative short-context approaches. The method also scales down to tiny information chunks (e.g., 500 tokens) without increasing the number of tokens encoded or sacrificing quality. Furthermore, we show that it is possible to generate schemas to generalize our approach to new tasks with minimal effort.
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
zip2zip: Inference-Time Adaptive Vocabularies for Language Models via Token Compression
Tokenization efficiency plays a critical role in the performance and cost of large language models (LLMs), yet most models rely on static tokenizers optimized for general-purpose corpora. These tokenizers' fixed vocabularies often fail to adapt to domain- or language-specific inputs, leading to longer token sequences and higher computational costs. We introduce zip2zip, a framework that enables LLMs to dynamically adjust token vocabulary at inference time, allowing for fewer generated tokens and thus faster inference. zip2zip consists of three key components: (1) a tokenizer based on Lempel-Ziv-Welch (LZW) compression that incrementally compresses tokens into reusable "hypertokens" on the fly; (2) an embedding layer that computes embeddings for newly formed hypertokens at runtime; and (3) a causal language modeling variant that trains the model to operate on hypertokenized, compressed sequences. We show that an existing LLM can be zip2zip-fied in 10 GPU-hours via parameter-efficient finetuning. The resulting zip2zip LLMs effectively learn to use hypertokens at inference time, reducing input and output sequence length by 20-60\%, with significant improvements in inference latency.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99times and 2.99times speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
Parity-Aware Byte-Pair Encoding: Improving Cross-lingual Fairness in Tokenization
Tokenization is the first -- and often least scrutinized -- step of most NLP pipelines. Standard algorithms for learning tokenizers rely on frequency-based objectives, which favor languages dominant in the training data and consequently leave lower-resource languages with tokenizations that are disproportionately longer, morphologically implausible, or even riddled with <UNK> placeholders. This phenomenon ultimately amplifies computational and financial inequalities between users from different language backgrounds. To remedy this, we introduce Parity-aware Byte Pair Encoding (BPE), a variant of the widely-used BPE algorithm. At every merge step, Parity-aware BPE maximizes the compression gain of the currently worst-compressed language, trading a small amount of global compression for cross-lingual parity. We find empirically that Parity-aware BPE leads to more equitable token counts across languages, with negligible impact on global compression rate and no substantial effect on language-model performance in downstream tasks.
Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
TokenRing: An Efficient Parallelism Framework for Infinite-Context LLMs via Bidirectional Communication
Efficient parallelization of Large Language Models (LLMs) with long sequences is essential but challenging due to their significant computational and memory demands, particularly stemming from communication bottlenecks in attention mechanisms. While sequence parallelism (SP) has been introduced as a potential solution, existing methods often suffer from limited scalability or inefficiency, rendering their effectiveness. Ring-Attention demonstrates the potential for scaling sequence processing but faces significant limitations due to its reliance on peer-to-peer (P2P) communication and inefficient utilization of network resources. As the degree of SP increases, the quadratic decrease in computation time per step contrasts sharply with the linear reduction in communication volume, exacerbating communication bottlenecks. To address these challenges, we propose TokenRing, a fine-grained parallel framework that leverages bidirectional P2P communication to effectively overlap computation and data transmission. By partitioning the attention block and concurrently transmitting Query and block outputs (i.e., block_out and block_lse) within a fully connected mesh topology, TokenRing achieves significant reductions in communication overhead and better load balancing. These innovations improve the scalability and efficiency of distributed Transformer models, particularly for long-context sequences. Experimental results demonstrate that TokenRing enhances throughput and reduces communication latency. Moreover, its design adapts seamlessly to various multi-GPU interconnect solutions, such as Huawei Ascend, ensuring broad compatibility and cost-effectiveness for distributed LLM inference and training. The code is available at: https://github.com/ACA-Lab-SJTU/token-ring.
Recycled Attention: Efficient inference for long-context language models
Generating long sequences of tokens given a long-context input imposes a heavy computational burden for large language models (LLMs). One of the computational bottleneck comes from computing attention over a long sequence of input at each generation step. In this paper, we propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens, reducing the cost of data movement and attention computation. Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further explore two ideas to improve performance-efficiency trade-offs: (1) dynamically decide when to perform recycled or full attention step based on the query similarities and (2) continued pre-training the model with Recycled Attention.
SemToken: Semantic-Aware Tokenization for Efficient Long-Context Language Modeling
Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose SemToken, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to 2.4times reduction in token count and 1.9times speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
GrowLength: Accelerating LLMs Pretraining by Progressively Growing Training Length
The evolving sophistication and intricacies of Large Language Models (LLMs) yield unprecedented advancements, yet they simultaneously demand considerable computational resources and incur significant costs. To alleviate these challenges, this paper introduces a novel, simple, and effective method named ``\growlength'' to accelerate the pretraining process of LLMs. Our method progressively increases the training length throughout the pretraining phase, thereby mitigating computational costs and enhancing efficiency. For instance, it begins with a sequence length of 128 and progressively extends to 4096. This approach enables models to process a larger number of tokens within limited time frames, potentially boosting their performance. In other words, the efficiency gain is derived from training with shorter sequences optimizing the utilization of resources. Our extensive experiments with various state-of-the-art LLMs have revealed that models trained using our method not only converge more swiftly but also exhibit superior performance metrics compared to those trained with existing methods. Furthermore, our method for LLMs pretraining acceleration does not require any additional engineering efforts, making it a practical solution in the realm of LLMs.
SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference
Autoregressive large language models (LLMs) have made remarkable progress in various natural language generation tasks. However, they incur high computation cost and latency resulting from the autoregressive token-by-token generation. To address this issue, several approaches have been proposed to reduce computational cost using early-exit strategies. These strategies enable faster text generation using reduced computation without applying the full computation graph to each token. While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching. This is because they have to wait until the last token in a batch exits before they can stop computing. This severely limits the practical application of such techniques. In this paper, we propose a simple and effective token-level early exit method, SkipDecode, designed to work seamlessly with batch inferencing and KV caching. It overcomes prior constraints by setting up a singular exit point for every token in a batch at each sequence position. It also guarantees a monotonic decrease in exit points, thereby eliminating the need to recompute KV Caches for preceding tokens. Rather than terminating computation prematurely as in prior works, our approach bypasses lower to middle layers, devoting most of the computational resources to upper layers, allowing later tokens to benefit from the compute expenditure by earlier tokens. Our experimental results show that SkipDecode can obtain 2x to 5x inference speedups with negligible regression across a variety of tasks. This is achieved using OPT models of 1.3 billion and 6.7 billion parameters, all the while being directly compatible with batching and KV caching optimization techniques.
ShortV: Efficient Multimodal Large Language Models by Freezing Visual Tokens in Ineffective Layers
Multimodal Large Language Models (MLLMs) suffer from high computational costs due to their massive size and the large number of visual tokens. In this paper, we investigate layer-wise redundancy in MLLMs by introducing a novel metric, Layer Contribution (LC), which quantifies the impact of a layer's transformations on visual and text tokens, respectively. The calculation of LC involves measuring the divergence in model output that results from removing the layer's transformations on the specified tokens. Our pilot experiment reveals that many layers of MLLMs exhibit minimal contribution during the processing of visual tokens. Motivated by this observation, we propose ShortV, a training-free method that leverages LC to identify ineffective layers, and freezes visual token updates in these layers. Experiments show that ShortV can freeze visual token in approximately 60\% of the MLLM layers, thereby dramatically reducing computational costs related to updating visual tokens. For example, it achieves a 50\% reduction in FLOPs on LLaVA-NeXT-13B while maintaining superior performance. The code will be publicly available at https://github.com/icip-cas/ShortV
Efficient Video Sampling: Pruning Temporally Redundant Tokens for Faster VLM Inference
Vision-language models (VLMs) have recently expanded from static image understanding to video reasoning, but their scalability is fundamentally limited by the quadratic cost of processing dense frame sequences. Long videos often exceed the token budget of modern language models, leading to severe context limitations and latency issues. We introduce Efficient Video Sampling (EVS), a simple, plug-and-play method for reducing token redundancy in videos by identifying and pruning temporally static patches -- spatial regions that remain unchanged across consecutive frames. EVS preserves positional identity, requires no architectural changes or retraining. We show that EVS substantially reduces token count while maintaining semantic fidelity, enabling faster inference and longer input sequences. Applied at inference time, EVS reduces large language model (LLM) time-to-first-token (TTFT) by up to 4x with minimal accuracy loss. When combined with an uptraining phase using stochastic pruning rates, EVS yields models that are robust to varying compression levels and retain full performance under aggressive pruning. Extensive experiments demonstrate that EVS consistently improves efficiency-accuracy trade-offs, unlocking scalable video-language understanding without sacrificing quality.
Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
PaSS: Parallel Speculative Sampling
Scaling the size of language models to tens of billions of parameters has led to impressive performance on a wide range of tasks. At generation, these models are used auto-regressively, requiring a forward pass for each generated token, and thus reading the full set of parameters from memory. This memory access forms the primary bottleneck for generation and it worsens as the model size increases. Moreover, executing a forward pass for multiple tokens in parallel often takes nearly the same time as it does for just one token. These two observations lead to the development of speculative sampling, where a second smaller model is used to draft a few tokens, that are then validated or rejected using a single forward pass of the large model. Unfortunately, this method requires two models that share the same tokenizer and thus limits its adoption. As an alternative, we propose to use parallel decoding as a way to draft multiple tokens from a single model with no computational cost, nor the need for a second model. Our approach only requires an additional input token that marks the words that will be generated simultaneously. We show promising performance (up to 30% speed-up) while requiring only as few as O(d_{emb}) additional parameters.
ILRe: Intermediate Layer Retrieval for Context Compression in Causal Language Models
Large Language Models (LLMs) have demonstrated success across many benchmarks. However, they still exhibit limitations in long-context scenarios, primarily due to their short effective context length, quadratic computational complexity, and high memory overhead when processing lengthy inputs. To mitigate these issues, we introduce a novel context compression pipeline, called Intermediate Layer Retrieval (ILRe), which determines one intermediate decoder layer offline, encodes context by streaming chunked prefill only up to that layer, and recalls tokens by the attention scores between the input query and full key cache in that specified layer. In particular, we propose a multi-pooling kernels allocating strategy in the token recalling process to maintain the completeness of semantics. Our approach not only reduces the prefilling complexity from O(L^2) to O(L), but also achieves performance comparable to or better than the full context in the long context scenarios. Without additional post training or operator development, ILRe can process a single 1M tokens request in less than half a minute (speedup approx 180times) and scores RULER-1M benchmark of approx 79.8 with model Llama-3.1-UltraLong-8B-1M-Instruct on a Huawei Ascend 910B NPU.
Multi-Candidate Speculative Decoding
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming. One way to speed them up is speculative decoding, which generates candidate segments (a sequence of tokens) from a fast draft model that is then verified in parallel by the target model. However, the acceptance rate of candidate tokens receives limitations from several factors, such as the model, the dataset, and the decoding setup. This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification. We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model. Our approach shows significant improvements in acceptance rates on multiple datasets and models, consistently outperforming standard speculative decoding.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
QuickSilver -- Speeding up LLM Inference through Dynamic Token Halting, KV Skipping, Contextual Token Fusion, and Adaptive Matryoshka Quantization
Inference accounts for the majority of latency and energy consumption in large language model (LLM) deployments, often exceeding 90% of total cost. While training-time efficiency has seen extensive progress, runtime optimization remains a key bottleneck, particularly under autoregressive decoding. Existing approaches -- such as pruning, quantization, early exits, and speculative decoding -- often require retraining, architectural changes, or disrupt decoding compatibility. We introduce QuickSilver, a modular, token-level framework that enables semantic adaptivity at inference time without altering model weights or structure. QuickSilver integrates four synergistic mechanisms: (i) Dynamic Token Halting, which halts computation for tokens with converged representations; (ii) KV Cache Skipping, which selectively suppresses memory writes to reduce attention overhead; and (iii) Contextual Token Fusion, which collapses redundant tokens into shared paths to shrink sequence length. Unlike speculative decoding or MoE routing, QuickSilver operates entirely on frozen, dense models and requires no auxiliary networks. Applied to GPT-2 and Llama-2 across WikiText-103 and C4, QuickSilver achieves up to 39.6% FLOP reduction with negligible perplexity degradation (<=0.2).
ColBERT's [MASK]-based Query Augmentation: Effects of Quadrupling the Query Input Length
A unique aspect of ColBERT is its use of [MASK] tokens in queries to score documents (query augmentation). Prior work shows [MASK] tokens weighting non-[MASK] query terms, emphasizing certain tokens over others , rather than introducing whole new terms as initially proposed. We begin by demonstrating that a term weighting behavior previously reported for [MASK] tokens in ColBERTv1 holds for ColBERTv2. We then examine the effect of changing the number of [MASK] tokens from zero to up to four times past the query input length used in training, both for first stage retrieval, and for scoring candidates, observing an initial decrease in performance with few [MASK]s, a large increase when enough [MASK]s are added to pad queries to an average length of 32, then a plateau in performance afterwards. Additionally, we compare baseline performance to performance when the query length is extended to 128 tokens, and find that differences are small (e.g., within 1% on various metrics) and generally statistically insignificant, indicating performance does not collapse if ColBERT is presented with more [MASK] tokens than expected.
Tree Cross Attention
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of O(N) tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens L < N on which cross attention is then applied, resulting in only O(L) complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) - a module based on Cross Attention that only retrieves information from a logarithmic O(log(N)) number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network
Large Language Models (LLMs) have been shown to be effective models of the human language system, with some models predicting most explainable variance of brain activity in current datasets. Even in untrained models, the representations induced by architectural priors can exhibit reasonable alignment to brain data. In this work, we investigate the key architectural components driving the surprising alignment of untrained models. To estimate LLM-to-brain similarity, we first select language-selective units within an LLM, similar to how neuroscientists identify the language network in the human brain. We then benchmark the brain alignment of these LLM units across five different brain recording datasets. By isolating critical components of the Transformer architecture, we identify tokenization strategy and multihead attention as the two major components driving brain alignment. A simple form of recurrence further improves alignment. We further demonstrate this quantitative brain alignment of our model by reproducing landmark studies in the language neuroscience field, showing that localized model units -- just like language voxels measured empirically in the human brain -- discriminate more reliably between lexical than syntactic differences, and exhibit similar response profiles under the same experimental conditions. Finally, we demonstrate the utility of our model's representations for language modeling, achieving improved sample and parameter efficiency over comparable architectures. Our model's estimates of surprisal sets a new state-of-the-art in the behavioral alignment to human reading times. Taken together, we propose a highly brain- and behaviorally-aligned model that conceptualizes the human language system as an untrained shallow feature encoder, with structural priors, combined with a trained decoder to achieve efficient and performant language processing.
Efficient Neural Music Generation
Recent progress in music generation has been remarkably advanced by the state-of-the-art MusicLM, which comprises a hierarchy of three LMs, respectively, for semantic, coarse acoustic, and fine acoustic modelings. Yet, sampling with the MusicLM requires processing through these LMs one by one to obtain the fine-grained acoustic tokens, making it computationally expensive and prohibitive for a real-time generation. Efficient music generation with a quality on par with MusicLM remains a significant challenge. In this paper, we present MeLoDy (M for music; L for LM; D for diffusion), an LM-guided diffusion model that generates music audios of state-of-the-art quality meanwhile reducing 95.7% or 99.6% forward passes in MusicLM, respectively, for sampling 10s or 30s music. MeLoDy inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform. DPD is proposed to simultaneously model the coarse and fine acoustics by incorporating the semantic information into segments of latents effectively via cross-attention at each denoising step. Our experimental results suggest the superiority of MeLoDy, not only in its practical advantages on sampling speed and infinitely continuable generation, but also in its state-of-the-art musicality, audio quality, and text correlation. Our samples are available at https://Efficient-MeLoDy.github.io/.
Whisper in Medusa's Ear: Multi-head Efficient Decoding for Transformer-based ASR
Large transformer-based models have significant potential for speech transcription and translation. Their self-attention mechanisms and parallel processing enable them to capture complex patterns and dependencies in audio sequences. However, this potential comes with challenges, as these large and computationally intensive models lead to slow inference speeds. Various optimization strategies have been proposed to improve performance, including efficient hardware utilization and algorithmic enhancements. In this paper, we introduce Whisper-Medusa, a novel approach designed to enhance processing speed with minimal impact on Word Error Rate (WER). The proposed model extends the OpenAI's Whisper architecture by predicting multiple tokens per iteration, resulting in a 50% reduction in latency. We showcase the effectiveness of Whisper-Medusa across different learning setups and datasets.
LOGO -- Long cOntext aliGnment via efficient preference Optimization
Long-context models(LCMs) have shown great potential in processing long input sequences(even more than 100M tokens) conveniently and effectively. With significant progress, recent research has pointed out that LCMs can accurately locate token-level salient information within the context. Yet, the generation performance of these LCMs is far from satisfactory and might result in misaligned responses, such as hallucinations. To enhance the generation capability of LCMs, existing works have investigated the effects of data size and quality for both pre-training and instruction tuning. Though achieving meaningful improvement, previous methods fall short in either effectiveness or efficiency. In this paper, we introduce LOGO(Long cOntext aliGnment via efficient preference Optimization), a training strategy that first introduces preference optimization for long-context alignment. To overcome the GPU memory-bound issue caused by the long sequence, LOGO employs a reference-free preference optimization strategy and adopts a position synthesis method to construct the training data. By training with only 0.3B data on a single 8timesA800 GPU machine for 16 hours, LOGO allows the Llama-3-8B-Instruct-80K model to achieve comparable performance with GPT-4 in real-world long-context tasks while preserving the model's original capabilities on other tasks, e.g., language modeling and MMLU. Moreover, LOGO can extend the model's context window size while enhancing its generation performance.
AdaToken-3D: Dynamic Spatial Gating for Efficient 3D Large Multimodal-Models Reasoning
Large Multimodal Models (LMMs) have become a pivotal research focus in deep learning, demonstrating remarkable capabilities in 3D scene understanding. However, current 3D LMMs employing thousands of spatial tokens for multimodal reasoning suffer from critical inefficiencies: excessive computational overhead and redundant information flows. Unlike 2D VLMs processing single images, 3D LMMs exhibit inherent architectural redundancy due to the heterogeneous mechanisms between spatial tokens and visual tokens. To address this challenge, we propose AdaToken-3D, an adaptive spatial token optimization framework that dynamically prunes redundant tokens through spatial contribution analysis. Our method automatically tailors pruning strategies to different 3D LMM architectures by quantifying token-level information flows via attention pattern mining. Extensive experiments on LLaVA-3D (a 7B parameter 3D-LMM) demonstrate that AdaToken-3D achieves 21\% faster inference speed and 63\% FLOPs reduction while maintaining original task accuracy. Beyond efficiency gains, this work systematically investigates redundancy patterns in multimodal spatial information flows through quantitative token interaction analysis. Our findings reveal that over 60\% of spatial tokens contribute minimally (<5\%) to the final predictions, establishing theoretical foundations for efficient 3D multimodal learning.
Tandem Transformers for Inference Efficient LLMs
The autoregressive nature of conventional large language models (LLMs) inherently limits inference speed, as tokens are generated sequentially. While speculative and parallel decoding techniques attempt to mitigate this, they face limitations: either relying on less accurate smaller models for generation or failing to fully leverage the base LLM's representations. We introduce a novel architecture, Tandem transformers, to address these issues. This architecture uniquely combines (1) a small autoregressive model and (2) a large model operating in block mode (processing multiple tokens simultaneously). The small model's predictive accuracy is substantially enhanced by granting it attention to the large model's richer representations. On the PaLM2 pretraining dataset, a tandem of PaLM2-Bison and PaLM2-Gecko demonstrates a 3.3% improvement in next-token prediction accuracy over a standalone PaLM2-Gecko, offering a 1.16x speedup compared to a PaLM2-Otter model with comparable downstream performance. We further incorporate the tandem model within the speculative decoding (SPEED) framework where the large model validates tokens from the small model. This ensures that the Tandem of PaLM2-Bison and PaLM2-Gecko achieves substantial speedup (around 1.14x faster than using vanilla PaLM2-Gecko in SPEED) while maintaining identical downstream task accuracy.
BREEN: Bridge Data-Efficient Encoder-Free Multimodal Learning with Learnable Queries
Encoder-free multimodal large language models(MLLMs) eliminate the need for a well-trained vision encoder by directly processing image tokens before the language model. While this approach reduces computational overhead and model complexity, it often requires large amounts of training data to effectively capture the visual knowledge typically encoded by vision models like CLIP. The absence of a vision encoder implies that the model is likely to rely on substantial data to learn the necessary visual-semantic alignments. In this work, we present BREEN, a data-efficient encoder-free multimodal architecture that mitigates this issue. BREEN leverages a learnable query and image experts to achieve comparable performance with significantly less training data. The learnable query, positioned between image and text tokens, is supervised by the output of a pretrained CLIP model to distill visual knowledge, bridging the gap between visual and textual modalities. Additionally, the image expert processes image tokens and learnable queries independently, improving efficiency and reducing interference with the LLM's textual capabilities. BREEN achieves comparable performance to prior encoder-free state-of-the-art models like Mono-InternVL, using only 13 million text-image pairs in training about one percent of the data required by existing methods. Our work highlights a promising direction for data-efficient encoder-free multimodal learning, offering an alternative to traditional encoder-based approaches.
Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
Efficiently modeling sequences with infinite context length has been a long-standing problem. Past works suffer from either the quadratic computation complexity or the limited extrapolation ability on length generalization. In this work, we present Samba, a simple hybrid architecture that layer-wise combines Mamba, a selective State Space Model (SSM), with Sliding Window Attention (SWA). Samba selectively compresses a given sequence into recurrent hidden states while still maintaining the ability to precisely recall memories with the attention mechanism. We scale Samba up to 3.8B parameters with 3.2T training tokens and show that Samba substantially outperforms the state-of-the-art models based on pure attention or SSMs on a wide range of benchmarks. When trained on 4K length sequences, Samba can be efficiently extrapolated to 256K context length with perfect memory recall and show improved token predictions up to 1M context length. As a linear-time sequence model, Samba enjoys a 3.73x higher throughput compared to Transformers with grouped-query attention when processing user prompts of 128K length, and 3.64x speedup when generating 64K tokens with unlimited streaming. A sample implementation of Samba is publicly available in https://github.com/microsoft/Samba.
When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models
Autoregressive Large Language Models (LLMs) have achieved impressive performance in language tasks but face two significant bottlenecks: (1) quadratic complexity in the attention module as the number of tokens increases, and (2) limited efficiency due to the sequential processing nature of autoregressive LLMs during generation. While linear attention and speculative decoding offer potential solutions, their applicability and synergistic potential for enhancing autoregressive LLMs remain uncertain. We conduct the first comprehensive study on the efficacy of existing linear attention methods for autoregressive LLMs, integrating them with speculative decoding. We introduce an augmentation technique for linear attention that ensures compatibility with speculative decoding, enabling more efficient training and serving of LLMs. Extensive experiments and ablation studies involving seven existing linear attention models and five encoder/decoder-based LLMs consistently validate the effectiveness of our augmented linearized LLMs. Notably, our approach achieves up to a 6.67 reduction in perplexity on the LLaMA model and up to a 2times speedup during generation compared to prior linear attention methods. Codes and models are available at https://github.com/GATECH-EIC/Linearized-LLM.
Super Tiny Language Models
The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods collectively reduce the parameter count by 90% to 95% compared to traditional models while maintaining competitive performance. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives, targeting models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
Landmark Attention: Random-Access Infinite Context Length for Transformers
While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.
inftyBench: Extending Long Context Evaluation Beyond 100K Tokens
Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose inftyBench, the first LLM benchmark featuring an average data length surpassing 100K tokens. inftyBench comprises synthetic and realistic tasks spanning diverse domains, presented in both English and Chinese. The tasks in inftyBench are designed to require well understanding of long dependencies in contexts, and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. In our experiments, based on inftyBench, we evaluate the state-of-the-art proprietary and open-source LLMs tailored for processing long contexts. The results indicate that existing long context LLMs still require significant advancements to effectively process 100K+ context. We further present three intriguing analyses regarding the behavior of LLMs processing long context.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens
Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
Getting the most out of your tokenizer for pre-training and domain adaptation
Tokenization is an understudied and often neglected component of modern LLMs. Most published works use a single tokenizer for all experiments, often borrowed from another model, without performing ablations or analysis to optimize tokenization. Moreover, the tokenizer is generally kept unchanged when fine-tuning a base model. In this paper, we show that the size, pre-tokenization regular expression, and training data of a tokenizer can significantly impact the model's generation speed, effective context size, memory usage, and downstream performance. We train specialized Byte-Pair Encoding code tokenizers, and conduct extensive ablations on the impact of tokenizer design on the performance of LLMs for code generation tasks such as HumanEval and MBPP, and provide recommendations for tokenizer hyper-parameters selection and switching the tokenizer in a pre-trained LLM. We perform our experiments on models trained from scratch and from pre-trained models, verifying their applicability to a wide range of use-cases. We find that when fine-tuning on more than 50 billion tokens, we can specialize the tokenizer of a pre-trained LLM to obtain large gains in generation speed and effective context size.
TETRIS: Optimal Draft Token Selection for Batch Speculative Decoding
We propose TETRIS, a novel method that optimizes the total throughput of batch speculative decoding in multi-request settings. Unlike existing methods that optimize for a single request or a group of requests as a whole, TETRIS actively selects the most promising draft tokens (for every request in a batch) to be accepted when verified in parallel, resulting in fewer rejected tokens and hence less wasted computing resources. Such an effective resource utilization to achieve fast inference in large language models (LLMs) is especially important to service providers with limited inference capacity. Compared to baseline speculative decoding, TETRIS yields a consistently higher acceptance rate and more effective utilization of the limited inference capacity. We show theoretically and empirically that TETRIS outperforms baseline speculative decoding and existing methods that dynamically select draft tokens, leading to a more efficient batch inference in LLMs.
Pruning All-Rounder: Rethinking and Improving Inference Efficiency for Large Vision Language Models
Although Large Vision-Language Models (LVLMs) have achieved impressive results, their high computational cost poses a significant barrier to wider application. To enhance inference efficiency, most existing approaches depend on parameter-dependent or token-dependent strategies to reduce computational demands. However, these methods typically require complex training processes and struggle to consistently select the most relevant tokens. In this paper, we systematically analyze the above challenges and provide a series of valuable insights for inference acceleration. Based on these findings, we propose a novel framework, the Pruning All-Rounder (PAR). Different from previous works, PAR develops a meta-router to adaptively organize pruning flows across both tokens and layers. With a self-supervised learning manner, our method achieves a superior balance between performance and efficiency. Notably, PAR is highly flexible, offering multiple pruning versions to address a range of pruning scenarios. The code for this work will be made publicly available.
Merging Experts into One: Improving Computational Efficiency of Mixture of Experts
Scaling the size of language models usually leads to remarkable advancements in NLP tasks. But it often comes with a price of growing computational cost. Although a sparse Mixture of Experts (MoE) can reduce the cost by activating a small subset of parameters (e.g., one expert) for each input, its computation escalates significantly if increasing the number of activated experts, limiting its practical utility. Can we retain the advantages of adding more experts without substantially increasing the computational costs? In this paper, we first demonstrate the superiority of selecting multiple experts and then propose a computation-efficient approach called \texttt{Merging Experts into One} (MEO), which reduces the computation cost to that of a single expert. Extensive experiments show that MEO significantly improves computational efficiency, e.g., FLOPS drops from 72.0G of vanilla MoE to 28.6G (MEO). Moreover, we propose a token-level attention block that further enhances the efficiency and performance of token-level MEO, e.g., 83.3\% (MEO) vs. 82.6\% (vanilla MoE) average score on the GLUE benchmark. Our code will be released upon acceptance. Code will be released at: https://github.com/Shwai-He/MEO.
Characterizing Prompt Compression Methods for Long Context Inference
Long context inference presents challenges at the system level with increased compute and memory requirements, as well as from an accuracy perspective in being able to reason over long contexts. Recently, several methods have been proposed to compress the prompt to reduce the context length. However, there has been little work on comparing the different proposed methods across different tasks through a standardized analysis. This has led to conflicting results. To address this, here we perform a comprehensive characterization and evaluation of different prompt compression methods. In particular, we analyze extractive compression, summarization-based abstractive compression, and token pruning methods. Surprisingly, we find that extractive compression often outperforms all the other approaches, and enables up to 10x compression with minimal accuracy degradation. Interestingly, we also find that despite several recent claims, token pruning methods often lag behind extractive compression. We only found marginal improvements on summarization tasks.
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
Context Filtering with Reward Modeling in Question Answering
Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings.
Chunk Twice, Embed Once: A Systematic Study of Segmentation and Representation Trade-offs in Chemistry-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems are increasingly vital for navigating the ever-expanding body of scientific literature, particularly in high-stakes domains such as chemistry. Despite the promise of RAG, foundational design choices -- such as how documents are segmented and represented -- remain underexplored in domain-specific contexts. This study presents the first large-scale, systematic evaluation of chunking strategies and embedding models tailored to chemistry-focused RAG systems. We investigate 25 chunking configurations across five method families and evaluate 48 embedding models on three chemistry-specific benchmarks, including the newly introduced QuestChemRetrieval dataset. Our results reveal that recursive token-based chunking (specifically R100-0) consistently outperforms other approaches, offering strong performance with minimal resource overhead. We also find that retrieval-optimized embeddings -- such as Nomic and Intfloat E5 variants -- substantially outperform domain-specialized models like SciBERT. By releasing our datasets, evaluation framework, and empirical benchmarks, we provide actionable guidelines for building effective and efficient chemistry-aware RAG systems.
VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking
Scale is the primary factor for building a powerful foundation model that could well generalize to a variety of downstream tasks. However, it is still challenging to train video foundation models with billions of parameters. This paper shows that video masked autoencoder (VideoMAE) is a scalable and general self-supervised pre-trainer for building video foundation models. We scale the VideoMAE in both model and data with a core design. Specifically, we present a dual masking strategy for efficient pre-training, with an encoder operating on a subset of video tokens and a decoder processing another subset of video tokens. Although VideoMAE is very efficient due to high masking ratio in encoder, masking decoder can still further reduce the overall computational cost. This enables the efficient pre-training of billion-level models in video. We also use a progressive training paradigm that involves an initial pre-training on a diverse multi-sourced unlabeled dataset, followed by a post-pre-training on a mixed labeled dataset. Finally, we successfully train a video ViT model with a billion parameters, which achieves a new state-of-the-art performance on the datasets of Kinetics (90.0% on K400 and 89.9% on K600) and Something-Something (68.7% on V1 and 77.0% on V2). In addition, we extensively verify the pre-trained video ViT models on a variety of downstream tasks, demonstrating its effectiveness as a general video representation learner. The code and model is available at https://github.com/OpenGVLab/VideoMAEv2.
DySpec: Faster Speculative Decoding with Dynamic Token Tree Structure
While speculative decoding has recently appeared as a promising direction for accelerating the inference of large language models (LLMs), the speedup and scalability are strongly bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as independent chains or fixed token trees, which fails to generalize to diverse query distributions. In this paper, we propose DySpec, a faster speculative decoding algorithm with a novel dynamic token tree structure. We begin by bridging the draft distribution and acceptance rate from intuitive and empirical clues, and successfully show that the two variables are strongly correlated. Based on this, we employ a greedy strategy to dynamically expand the token tree at run time. Theoretically, we show that our method can achieve optimal results under mild assumptions. Empirically, DySpec yields a higher acceptance rate and speedup than fixed trees. DySpec can drastically improve the throughput and reduce the latency of token generation across various data distribution and model sizes, which significantly outperforms strong competitors, including Specinfer and Sequoia. Under low temperature setting, DySpec can improve the throughput up to 9.1times and reduce the latency up to 9.4times on Llama2-70B. Under high temperature setting, DySpec can also improve the throughput up to 6.21times, despite the increasing difficulty of speculating more than one token per step for draft model.
Inference Acceleration for Large Language Models on CPUs
In recent years, large language models have demonstrated remarkable performance across various natural language processing (NLP) tasks. However, deploying these models for real-world applications often requires efficient inference solutions to handle the computational demands. In this paper, we explore the utilization of CPUs for accelerating the inference of large language models. Specifically, we introduce a parallelized approach to enhance throughput by 1) Exploiting the parallel processing capabilities of modern CPU architectures, 2) Batching the inference request. Our evaluation shows the accelerated inference engine gives an 18-22x improvement in the generated token per sec. The improvement is more with longer sequence and larger models. In addition to this, we can also run multiple workers in the same machine with NUMA node isolation to further improvement in tokens/s. Table 2, we have received 4x additional improvement with 4 workers. This would also make Gen-AI based products and companies environment friendly, our estimates shows that CPU usage for Inference could reduce the power consumption of LLMs by 48.9% while providing production ready throughput and latency.
Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models
Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient.
Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning
Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.
Efficient Attention Mechanisms for Large Language Models: A Survey
Transformer-based architectures have become the prevailing backbone of large language models. However, the quadratic time and memory complexity of self-attention remains a fundamental obstacle to efficient long-context modeling. To address this limitation, recent research has introduced two principal categories of efficient attention mechanisms. Linear attention methods achieve linear complexity through kernel approximations, recurrent formulations, or fastweight dynamics, thereby enabling scalable inference with reduced computational overhead. Sparse attention techniques, in contrast, limit attention computation to selected subsets of tokens based on fixed patterns, block-wise routing, or clustering strategies, enhancing efficiency while preserving contextual coverage. This survey provides a systematic and comprehensive overview of these developments, integrating both algorithmic innovations and hardware-level considerations. In addition, we analyze the incorporation of efficient attention into largescale pre-trained language models, including both architectures built entirely on efficient attention and hybrid designs that combine local and global components. By aligning theoretical foundations with practical deployment strategies, this work aims to serve as a foundational reference for advancing the design of scalable and efficient language models.
SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless special tokens (i.e., separators) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
CAT Pruning: Cluster-Aware Token Pruning For Text-to-Image Diffusion Models
Diffusion models have revolutionized generative tasks, especially in the domain of text-to-image synthesis; however, their iterative denoising process demands substantial computational resources. In this paper, we present a novel acceleration strategy that integrates token-level pruning with caching techniques to tackle this computational challenge. By employing noise relative magnitude, we identify significant token changes across denoising iterations. Additionally, we enhance token selection by incorporating spatial clustering and ensuring distributional balance. Our experiments demonstrate reveal a 50%-60% reduction in computational costs while preserving the performance of the model, thereby markedly increasing the efficiency of diffusion models. The code is available at https://github.com/ada-cheng/CAT-Pruning
