new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 10

A Tale of Two Sides of Wafer: Physical Implementation and Block-Level PPA on Flip FET with Dual-sided Signals

As the conventional scaling of logic devices comes to an end, functional wafer backside and 3D transistor stacking are consensus for next-generation logic technology, offering considerable design space extension for powers, signals or even devices on the wafer backside. The Flip FET (FFET), a novel transistor architecture combining 3D transistor stacking and fully functional wafer backside, was recently proposed. With symmetric dual-sided standard cell design, the FFET can deliver around 12.5% cell area scaling and faster but more energy-efficient libraries beyond other stacked transistor technologies such as CFET. Besides, thanks to the novel cell design with dual-sided pins, the FFET supports dual-sided signal routing, delivering better routability and larger backside design space. In this work, we demonstrated a comprehensive FFET evaluation framework considering physical implementation and block-level power-performance-area (PPA) assessment for the first time, in which key functions are dual-sided routing and dual-sided RC extraction. A 32-bit RISC-V core was used for the evaluation here. Compared to the CFET with single-sided signals, the FFET with single-sided signals achieved 23.3% post-P&R core area reduction, 25.0% higher frequency and 11.9% lower power at the same utilization, and 16.0 % higher frequency at the same core area. Meanwhile, the FFET supports dual-sided signals, which can further benefit more from flexible allocation of cell input pins on both sides. By optimizing the input pin density and BEOL routing layer number on each side, 10.6% frequency gain was realized without power degradation compared to the one with single-sided signal routing. Moreover, the routability and power efficiency of FFET barely degrades even with the routing layer number reduced from 12 to 5 on each side, validating the great space for cost-friendly design enabled by FFET.

  • 10 authors
·
Jan 25, 2025

Deep Open-Set Recognition for Silicon Wafer Production Monitoring

The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.

  • 5 authors
·
Aug 30, 2022

WaferLLM: Large Language Model Inference at Wafer Scale

Emerging AI accelerators increasingly adopt wafer-scale manufacturing technologies, integrating hundreds of thousands of AI cores in a mesh architecture with large distributed on-chip memory (tens of GB in total) and ultra-high on-chip memory bandwidth (tens of PB/s). However, current LLM inference systems, optimized for shared memory architectures like GPUs, fail to exploit these accelerators fully. We introduce WaferLLM, the first wafer-scale LLM inference system. WaferLLM is guided by a novel PLMR model (pronounced as "Plummer") that captures the unique hardware characteristics of wafer-scale architectures. Leveraging this model, WaferLLM pioneers wafer-scale LLM parallelism, optimizing the utilization of hundreds of thousands of on-chip cores. It also introduces MeshGEMM and MeshGEMV, the first GEMM and GEMV implementations designed to scale effectively on wafer-scale accelerators. Evaluations show that WaferLLM achieves up to 200times higher accelerator utilization than state-of-the-art methods. Leveraging a wafer-scale accelerator (Cerebras WSE2), WaferLLM delivers GEMV operations 606times faster and 16times more energy-efficient than on an NVIDIA A100 GPU. For full LLM inference, WaferLLM achieves 10-20times speedups over A100 GPU clusters running SGLang and vLLM. These advantages are expected to grow as wafer-scale AI models, software, and hardware continue to mature. WaferLLM is open-sourced at https://github.com/MeshInfra/WaferLLM.

  • 8 authors
·
Feb 6, 2025

Empirical and Experimental Insights into Machine Learning-Based Defect Classification in Semiconductor Wafers

This survey paper offers a comprehensive review of methodologies utilizing machine learning (ML) classification techniques for identifying wafer defects in semiconductor manufacturing. Despite the growing body of research demonstrating the effectiveness of ML in wafer defect identification, there is a noticeable absence of comprehensive reviews on this subject. This survey attempts to fill this void by amalgamating available literature and providing an in-depth analysis of the advantages, limitations, and potential applications of various ML classification algorithms in the realm of wafer defect detection. An innovative taxonomy of methodologies that we present provides a detailed classification of algorithms into more refined categories and techniques. This taxonomy follows a three-tier structure, starting from broad methodology categories and ending with specific techniques. It aids researchers in comprehending the complex relationships between different algorithms and their techniques. We employ a rigorous empirical and experimental evaluation to rank these varying techniques. For the empirical evaluation, we assess techniques based on a set of five criteria. The experimental evaluation ranks the algorithms employing the same techniques, sub-categories, and categories. Also the paper illuminates the future prospects of ML classification techniques for wafer defect identification, underscoring potential advancements and opportunities for further research in this field

  • 1 authors
·
Oct 16, 2023