--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: intent-classifier-entity-executor results: [] --- # intent-classifier-entity-executor This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0020 - Precision: 0.9990 - Recall: 0.9991 - F1: 0.9990 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0079 | 1.0 | 2922 | 0.0081 | 0.9932 | 0.9932 | 0.9932 | 0.9975 | | 0.0056 | 2.0 | 5844 | 0.0040 | 0.9971 | 0.9969 | 0.9970 | 0.9989 | | 0.002 | 3.0 | 8766 | 0.0021 | 0.9988 | 0.9986 | 0.9987 | 0.9995 | | 0.0004 | 4.0 | 11688 | 0.0017 | 0.9989 | 0.9989 | 0.9989 | 0.9996 | | 0.0003 | 5.0 | 14610 | 0.0020 | 0.9990 | 0.9991 | 0.9990 | 0.9996 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1