File size: 20,588 Bytes
b888ea4
 
56af4a1
b888ea4
 
9866705
b888ea4
 
 
9c339bf
b888ea4
 
 
 
2a24d39
b888ea4
 
ea75ff2
2a24d39
 
b888ea4
 
 
 
 
381b60d
b888ea4
 
56af4a1
b888ea4
 
 
 
56af4a1
80d856d
b888ea4
56af4a1
fdf3e6e
d7ac6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783afe2
d7ac6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b888ea4
e699ed3
 
b888ea4
 
 
 
40f7460
b888ea4
 
 
 
 
783afe2
b888ea4
783afe2
b888ea4
 
 
 
 
 
 
783afe2
b888ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381b60d
e699ed3
 
b888ea4
 
e699ed3
b888ea4
 
 
 
 
 
 
 
 
 
 
 
32cdd6f
b888ea4
 
32cdd6f
b888ea4
 
f25b4f5
b888ea4
32cdd6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b888ea4
 
 
 
 
 
 
 
 
 
 
 
0811b09
 
 
f5f0a6e
b888ea4
 
 
 
 
 
 
 
 
0811b09
 
 
 
f5f0a6e
b888ea4
 
 
 
 
 
783afe2
b888ea4
 
e699ed3
b888ea4
 
 
 
 
0686158
b888ea4
 
 
 
 
0686158
b888ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf3e6e
b888ea4
40f7460
 
fdf3e6e
 
 
b888ea4
 
 
 
 
fdf3e6e
 
b888ea4
ce9c00b
b888ea4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/googlenet/web-assets/model_demo.png)

# GoogLeNet: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


GoogLeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of GoogLeNet found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py).


This repository provides scripts to run GoogLeNet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/googlenet).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 6.62M
  - Model size (float): 25.3 MB
  - Model size (w8a8): 6.54 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| GoogLeNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 5.145 ms | 0 - 28 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.045 ms | 1 - 22 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.387 ms | 0 - 43 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.768 ms | 1 - 30 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.94 ms | 0 - 95 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.835 ms | 1 - 6 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.081 ms | 1 - 36 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx.zip) |
| GoogLeNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 7.25 ms | 0 - 27 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.565 ms | 1 - 22 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 5.145 ms | 0 - 28 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.045 ms | 1 - 22 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.939 ms | 0 - 92 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.841 ms | 0 - 46 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.862 ms | 0 - 34 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.805 ms | 0 - 26 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.938 ms | 0 - 91 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.84 ms | 0 - 46 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 7.25 ms | 0 - 27 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.565 ms | 1 - 22 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.597 ms | 0 - 39 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.565 ms | 0 - 31 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.69 ms | 0 - 31 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx.zip) |
| GoogLeNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.492 ms | 0 - 32 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.475 ms | 1 - 28 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.573 ms | 0 - 26 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx.zip) |
| GoogLeNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.408 ms | 0 - 30 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
| GoogLeNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.377 ms | 0 - 27 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.525 ms | 1 - 23 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx.zip) |
| GoogLeNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.99 ms | 34 - 34 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.dlc) |
| GoogLeNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.059 ms | 13 - 13 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx.zip) |
| GoogLeNet | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 0.97 ms | 0 - 9 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 0.818 ms | 0 - 99 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 13.771 ms | 6 - 19 MB | CPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.874 ms | 0 - 22 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.8 ms | 0 - 23 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.343 ms | 0 - 36 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.431 ms | 0 - 34 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.266 ms | 0 - 39 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.252 ms | 0 - 40 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.532 ms | 0 - 41 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.467 ms | 0 - 22 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.425 ms | 0 - 23 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 6.188 ms | 0 - 3 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 7.813 ms | 6 - 15 MB | CPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.874 ms | 0 - 22 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.8 ms | 0 - 23 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.269 ms | 0 - 40 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.248 ms | 0 - 39 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.642 ms | 0 - 27 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.627 ms | 0 - 29 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.27 ms | 0 - 40 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.243 ms | 0 - 5 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.467 ms | 0 - 22 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.425 ms | 0 - 23 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.193 ms | 0 - 38 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.18 ms | 0 - 38 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.32 ms | 0 - 39 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.16 ms | 0 - 31 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.152 ms | 0 - 26 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.293 ms | 0 - 32 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 0.348 ms | 0 - 26 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 0.332 ms | 0 - 32 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 8.713 ms | 6 - 22 MB | CPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.15 ms | 0 - 25 MB | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.tflite) |
| GoogLeNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.147 ms | 0 - 26 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.295 ms | 0 - 26 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |
| GoogLeNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.354 ms | 29 - 29 MB | NPU | [GoogLeNet.dlc](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.dlc) |
| GoogLeNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.405 ms | 7 - 7 MB | NPU | [GoogLeNet.onnx.zip](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet_w8a8.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.googlenet.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.googlenet.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.googlenet.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/googlenet/qai_hub_models/models/GoogLeNet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.googlenet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.googlenet.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.googlenet.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on GoogLeNet's performance across various devices [here](https://aihub.qualcomm.com/models/googlenet).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of GoogLeNet can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).